Skip to content

EthanH3514/XCPC_Template

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 

History

20 Commits
 
 
 
 

Repository files navigation

使用Typora启用内联公式编辑,github上预览可能会有部分格式问题,推荐下载之后本地浏览

快读

inline bool read(int& a)
{
	int s = 0, w = 1;
	char ch = getchar();
    if(ch==EOF)
        return false;
	while (ch < '0' || ch>'9')
	{
		if (ch == '-')
			w = -1;
		ch = getchar();
	}
	while (ch >= '0' && ch <= '9')
	{
		s = s * 10 + ch - '0';
		ch = getchar();
	}
	a = s * w;
    return true;
}

快输

void write(int x)
{
    if(x<0)
        putchar('-'),x=-x;
    if(x>9)
        write(x/10);
    putchar(x%10+'0');
    return;
}

随机数生成

[a, b]的随机数
mt19937 eng(time(0));
int randint(int a, int b)
{
    uniform_int_distribution<int> dis(a, b);
    return dis(eng);
}
xor shift

映射到$$2^{64}$$

const ull mask = std::chrono::steady_clock::now().time_since_epoch().count();
ull shift(ull x){
    x^=x<<13;
    x^=x>>7;
    x^=x<<17;
    x^=mask;
    return x;
}

memset

int / long long

“较”的原则:加法不爆

  • 极大值: 0x7f
  • 较大值: 0x3f
  • 较小值: 0xc0
  • 极小值: 0x80
float

“较”的原则:保证一定位精度

7f以上一直到be都是-0(很小的>-1.0的负数)

  • 极大值:0x7f
  • 较大值:0x4f
  • 较小值:0xce
  • 极小值:0xfe
double

“较”的原则:保证一定位精度

  • 极大值:0x7f
  • 较大值:0x43
  • 较小值:0xc2
  • 极小值:0xfe

快速幂

ll qpow(ll a,ll n,ll m)
{
    ll ans=1;
    while(n)
    {
        if(n&1)
            ans=(__int128_t)ans*a%m;
       	a=(__int128_t)a*a%m;
        n>>=1;
    }
    return ans;
}

pair哈希

struct pair_hash
{
    template <class T1, class T2>
    size_t operator () (pair<T1, T2> const &pair) const
    {
        size_t h1 = hash<T1>()(pair.first);
        size_t h2 = hash<T2>()(pair.second);
        return h1 ^ h2;
    }
};
unordered_set<pair<int,int>,pair_hash>st;

时间种子unordered_map

struct custom_hash {
	static uint64_t splitmix64(uint64_t x) {
		x ^= x << 13;
		x ^= x >> 7;
		x ^= x << 17;
		return x; 
	}
	size_t operator () (uint64_t x) const {
		static const uint64_t FIXED_RANDOM = chrono::steady_clock::now().time_since_epoch().count();
		return splitmix64(x + FIXED_RANDOM);
	}
};
unordered_map<uint64_t, int, custom_hash> safe_map;

数据结构

并查集

普通并查集
int f[N];
int find(int x){
    return x==f[x]?x:f[x]=find(f[x]);
}
void merge(int x,int y){
    x=find(x),y=find(y);
    if(x!=y)
        f[x]=y;
}
带权并查集
const int N=2e5+5;
int f[N],dis[N];
int find(int x)
{
    if(x!=f[x])
    {
        int t=f[x];
        f[x]=find(f[x]);
        dis[x]+=dis[t];
    }
    return f[x];
}
bool merge(int a,int b,int d)
{
    int ra=find(a),rb=find(b);
    d+=dis[a]-dis[b];
    if(ra==rb)
    {
        if(d!=0)
            return false;
        return true;
    }
    f[ra]=rb;
    dis[ra]-=d;
    return true;
}

树状数组

inline int lowbit(int x){ return x & (-x); }
int tree[N];
void update(int x,int d){
    while(x<=N){
        tree[x]+=d;
        x+=lowbit(x);
    }
}
int sum(int x){
    int ans=0;
    while(x>0){
        ans+=tree[x];
        x-=lowbit(x);
    }
    return ans;
}

二维树状数组

#define lowbit(x) ((x) & -(x))
void add(int x, int y, int d) {
    for (int i = x; i <= n; i += lowbit(i)) {
        for (int j = y; j <= m; j += lowbit(j)) {
            bit[i][j] += d;
        }
    }
}
int query(int x, int y) {
    int ret = 0;
    for (int i = x; i > 0; i -= lowbit(i)) {
        for (int j = y; j > 0; j -= lowbit(j)) {
            ret += bit[i][j];
        }
    }
    return ret;
}

线段树

区间修改查询区间和
struct SegmentTree{
    int a[N],tree[N<<2],tag[N<<2];
    int ls(int p){return p<<1;}
    int rs(int p){return p<<1|1;}
    void push_up(int p){
        tree[p]=tree[ls(p)]+tree[rs(p)];
    }
    void build(int p,int pl,int pr){
        tag[p]=0;
        if(pl==pr){
            tree[p]=a[pl];
            return;
        }
        int mid=(pl+pr)>>1;
        build(ls(p),pl,mid);
        build(rs(p),mid+1,pr);
        push_up(p);
    }
    void addtag(int p,int pl,int pr,int d){
        tag[p]+=d;
        tree[p]+=d*(pr-pl+1);
    }
    void push_down(int p,int pl,int pr){
        if(tag[p]){
            int mid=(pl+pr)>>1;
            addtag(ls(p),pl,mid,tag[p]);
            addtag(rs(p),mid+1,pr,tag[p]);
            tag[p]=0;
        }
    }
    void update(int L,int R,int p,int pl,int pr,int d){
        if(L<=pl&&pr<=R){
            addtag(p,pl,pr,d);
            return;
        }
        push_down(p,pl,pr);
        int mid=(pl+pr)>>1;
        if(L<=mid)
            update(L,R,ls(p),pl,mid,d);
        if(R>mid)
            update(L,R,rs(p),mid+1,pr,d);
        push_up(p);
    }
    int query(int L,int R,int p,int pl,int pr){
        if(L<=pl&&pr<=R)
            return tree[p];
        push_down(p,pl,pr);
        int mid=(pl+pr)>>1;
        int ans=0;
        if(L<=mid)
            ans+=query(L,R,ls(p),pl,mid);
        if(R>mid)
            ans+=query(L,R,rs(p),mid+1,pr);
        return ans;
    }
};
区间修改查询区间最值
#include <bits/stdc++.h>
using namespace std;
const int maxn=3e5+10;
const int inf =2e9;
struct Node{
    int l,r,res,tag;  
};
struct SegmentTree{
    Node a[maxn*4];
    void tag_init(int i){
        a[i].tag=inf;
    }
    void tag_union(int fa,int i){
        if(a[fa].tag!=inf)a[i].tag=a[fa].tag;
    }
    void tag_cal(int i){
        if(a[i].tag!=inf)a[i].res=a[i].tag;
    }
    void pushdown(int i){
        tag_cal(i);
        if(a[i].l!=a[i].r){
            tag_union(i,i*2);
            tag_union(i,i*2+1);
        }
        tag_init(i);
    }
    void pushup(int i){
        if(a[i].l==a[i].r)return;
        pushdown(i*2);
        pushdown(i*2+1);
        a[i].res=min(a[i*2].res,a[i*2+1].res);
    }
    void build(int i,int l,int r){
        a[i].l=l,a[i].r=r;tag_init(i);
        if(l>=r)return;
        int mid=(l+r)/2;
        build(i*2,l,mid);
        build(i*2+1,mid+1,r);
    }
    void update(int i,int l,int r,int w){
        pushdown(i);
        if(a[i].r<l||a[i].l>r||l>r)return;
        if(a[i].l>=l&&a[i].r<=r){
            a[i].tag=w;
            return;
        }
        update(i*2,l,r,w);
        update(i*2+1,l,r,w);
        pushup(i);
    }
    int query(int i,int l,int r){
        pushdown(i);
        if(a[i].r<l||a[i].l>r||l>r)return inf;
        if(a[i].l>=l&&a[i].r<=r){
            return a[i].res;
        }
        return min(query(i*2,l,r),query(i*2+1,l,r));
    }
};
SegmentTree tri;
区间取$max(x,a_i)$或$min(x,a_i)$ (吉老师线段树)
#define lson l, m, rt << 1
#define rson m + 1, r, rt << 1 | 1
typedef long long LL;
typedef unsigned long long uLL;
LL z = 1;
const int N = 1e6 + 5;
struct SegmentBeats{//以下板子中都是(1,n,1,L,R) 先大区间、区间标号,然后当前区间左右界
    int v1[N * 4], cnt[N * 4], tag[N * 4], v2[N * 4]; // v1是最大值,v2是次大值,tag 是最值标记,cnt 是最小值的个数 
    LL sum[N * 4];
    void pushup(int rt){
        if(v1[rt << 1] > v1[rt << 1 | 1]){
            v1[rt] = v1[rt << 1];
            cnt[rt] = cnt[rt << 1];
            v2[rt] = max(v2[rt << 1], v1[rt << 1 | 1]);
        }
        else if(v1[rt << 1] < v1[rt << 1 | 1]){
            v1[rt] = v1[rt << 1 | 1];
            cnt[rt] = cnt[rt << 1 | 1];
            v2[rt] = max(v1[rt << 1], v2[rt << 1 | 1]);
        }
        else{
            v1[rt] = v1[rt << 1];
            cnt[rt] = cnt[rt << 1] + cnt[rt << 1 | 1];
            v2[rt] = max(v2[rt << 1], v2[rt << 1 | 1]);
        }
        sum[rt] = sum[rt << 1] + sum[rt << 1 | 1];
    }
    void build(int l, int r, int rt){
        tag[rt] = -1;
        if(l == r){
            int x;
            cin>>x;
            v1[rt] = sum[rt] = x, v2[rt] = -1, cnt[rt] = 1;//次大值初始化为 -1 
            return;
        }
        int m = l + r >> 1;
        build(lson);
        build(rson);
        pushup(rt);
    }
    void addtag(int rt, int c){
        if(v1[rt] <= c) return;
        sum[rt] -= z * cnt[rt] * (v1[rt] - c);//更新 sum 
        v1[rt] = tag[rt] = c;//更新最值 
    }
    void pushdown(int rt){
        if(tag[rt] != -1){
            addtag(rt << 1, tag[rt]);//给左儿子加 tag 
            addtag(rt << 1 | 1, tag[rt]);//给右儿子加 tag 
            tag[rt] = -1;
        }
    }
    void update(int l, int r, int rt, int a, int b, int c){
        if(v1[rt] <= c) return;
        if(l >= a && r <= b && v2[rt] < c){//该区间的最小值都变成 c 
            addtag(rt, c);
            return;
        }
        pushdown(rt);
        int m = l + r >> 1;
        if(a <= m) update(lson, a, b, c);
        if(b > m) update(rson, a, b, c);
        pushup(rt);
    }
    int query_max(int l, int r, int rt, int a, int b){
        if(l >= a && r <= b) return v1[rt];
        int m = l + r >> 1, ans = 0;
        pushdown(rt);
        if(a <= m) ans = max(ans, query_max(lson, a, b));
        if(b > m) ans = max(ans, query_max(rson, a, b));
        return ans;
    }
    LL query_sum(int l, int r, int rt, int a, int b){
        if(l >= a && r <= b) return sum[rt];
        int m = l + r >> 1;
        LL ans = 0;
        pushdown(rt);
        if(a <= m) ans += query_sum(lson, a, b);
        if(b > m) ans += query_sum(rson, a, b);
        return ans;
    }
};
ODT

在随机数据下以$O(n\log n\log n)$的速度实现

  • 区间加
  • 区间赋值
  • 求区间第k大值
  • 求区间n次方和
struct node
{
    ll l, r;
    mutable ll v; // 这里mutable要写不然可能会CE
    node(ll l, ll r, ll v) : l(l), r(r), v(v) {} // 构造函数
    bool operator<(const node &o) const { return l < o.l; } // 重载小于运算符
};
set<node> tree;
auto split(ll pos)// <l,r,v> -> <l,pos-1,v>, <pos,r,v>
{
    auto it = tree.lower_bound(node(pos, 0, 0)); // 寻找左端点大于等于pos的第一个节点
    if (it != tree.end() && it->l == pos) // 如果已经存在以pos为左端点的节点,直接返回
        return it;
    it--; // 否则往前数一个节点
    ll l = it->l, r = it->r, v = it->v;
    tree.erase(it); // 删除该节点
    tree.insert(node(l, pos - 1, v)); // 插入<l,pos-1,v>和<pos,r,v>
    return tree.insert(node(pos, r, v)).first; // 返回以pos开头的那个节点的迭代器
                                               // insert默认返回值是一个pair,第一个成员是我们要的
}
void assign(ll l, ll r, ll v)//区间赋值 <l,r> a_i -> v
{
    auto end = split(r + 1), begin = split(l); // 顺序不能颠倒,否则可能RE
    tree.erase(begin, end); // 清除一系列节点
    tree.insert(node(l, r, v)); // 插入新的节点
}
void add(ll l, ll r, ll v)//区间加 <l,r> a_i -> a_i+v
{
    auto end = split(r + 1);
    for (auto it = split(l); it != end; it++)
        it->v += v;
}
ll kth(ll l, ll r, ll k)//求区间第k大 <l,r>
{
    auto end = split(r + 1);
    vector<pair<ll, ll>> v; // 这个pair里存节点的值和区间长度
    for (auto it = split(l); it != end; it++)
        v.push_back(make_pair(it->v, it->r - it->l + 1));
    sort(v.begin(), v.end()); // 直接按节点的值的大小排下序
    for (int i = 0; i < v.size(); i++) // 然后挨个丢出来,直到丢出k个元素为止
    {
        k -= v[i].second;
        if (k <= 0)
            return v[i].first;
    }
}
ll sum_of_pow(ll l, ll r, ll x, ll y)//求区间x次方和 模y
{
    ll tot = 0;
    auto end = split(r + 1);
    for (auto it = split(l); it != end; it++)
        tot = (tot + qpow(it->v, x, y) * (it->r - it->l + 1)) % y; // qpow自己写一下
    return tot;
}

图论

树的直径

两次dfs

任意一点出发找到最远点$$A$$,$$A$$一定在直径上,再从$$A$$出发找到最远点$$B$$,$$B$$即为直径

vector<pair<int,int>>arc[N];
void dfs(int x,int f,int d)
{
    dist[x]=d;
    fa[x]=fa;
    for(auto [it,i]:arc[x])
    {
        if(it==f)
            continue;
        dfs(it,x,d+i);
    }
}
树形dp
int dp[N],M=0;
bool vis[N];
void Dfs(int x,int f)
{
    vis[x]=true;
    for(auto [it,i]:arc[x])
    {
        if(vis[it]||it==f)
          	continue;
        Dfs(it,x);
        M=max(M,dp[x]+dp[it]+i);
        dp[x]=max(dp[x],dp[it]+i);
    }
}

LCA

倍增

树上倍增

vector<int>arc[N];
int deep[N],fa[N][20];
void dfs(int x,int f)
{
    deep[x]=deep[f]+1;
    fa[x][0]=f;
    for(int i=1;i<=19;i++)
        fa[x][i]=fa[fa[x][i-1]][i-1];
    for(auto it:arc[x])
    {
        if(it==f)
           	continue;
        dfs(it,x);
    }
}
int LCA(int x,int y)
{
    if(deep[x]<deep[y])
        swap(x,y);
    for(int i=19;i>=0;i--)
    	if(deep[fa[x][i]]>=deep[y])
            x=fa[x][i];
    if(x==y)
        return x;
    for(int i=19;i>=0;i--)
        if(fa[x][i]!=fa[y][i])
            x=fa[x][i],y=fa[y][i];
   	return fa[x][0];
}
tarjan

离线之后并查集找LCA

vector<pair<int,int>>arc[N];
int fa[N],ans[N];
bool vis[N];
int find(int x)
{
    return x==fa[x]?fa[x]:fa[x]=find(fa[x]);
}
void tarjan(int x,int f)
{
    vis[x]=true;
    for(auto [it,i]:arc[x])
    {
        if(it==f)
           	continue;
        if(!vis[it])
        {
            tarjan(it,x);
            fa[it]=x;
        }
    }
    for(auto [it,i]:arc[x])
    {
        if(it==f)
            continue;
        if(vis[it])
            ans[i]=find(it);
    }
}

最短路

Floyd

时间复杂度$$O(n^3)$$,空间复杂度$$O(n^2)$$

for (k = 1; k <= n; k++) 
    for (x = 1; x <= n; x++) 
        for (y = 1; y <= n; y++) 
            f[x][y] = min(f[x][y], f[x][k] + f[k][y]);
Bellman-ford

对于边$$(u,v)$$,松弛操作对应$$dis(v)=min(dis(v),dis(u)+w(u,v))$$

最短路存在的情况下,最多经过$$n-1$$次松弛操作,时间复杂度为$$O(nm)$$

可以用于判图中是否有负环,如果从$$s$$点没跑出负环,只能说明从$s$点出发不能抵达负环,并不能说明图中没有负环

可以建立一个超级源点,向图上每一个节点连一个权值为0的边,对超级源点执行$$Bellman-ford$$

int dis[N];
bool bellmanford(int n,int s){//图的点数为n,出发点为s
    memset(dis,63,sizeof(dis));
    dis[s]=0;
    bool flag=false;
    for(int i=1;i<=n;i++){
        flag=false;
        for(int j=1;j<=n;j++){
            if(dis[j]==inf)
                continue;
            for(auto [it,w]:G[j]){
                if(dis[it]>dis[j]+w){
                    dis[it]=dis[j]+w;
                    flag=true;
                }
            }
        }
        if(!flag)
            break;
    }
    return flag;
}
SPFA
int dis[N],cnt[N];
bool vis[N];
queue<int>q;
bool spfa(int n,int s){
    memset(dis,63,sizeof(dis));
    dis[s]=0;vis[s]=true;
    q.push(s);
    while(q.size()){
        int tmp=q.front();
        q.pop();
        vis[tmp]=false;
        for(auto [it,w]:G[tmp]){
            if(dis[it]>dis[tmp]+w){
                dis[it]=dis[tmp]+w;
                cnt[it]=cnt[tmp]+1;
                if(cnt[it]>=n)
                    return false;
                if(!vis[it]){
                    q.push(it);
                    vis[it]=true;
                }
            }
        }
    }
    return true;
}
Dijkstra

优先队列实现

复杂度$O(m\log m)$

int dis[N];
bool vis[N];
priority_queue<pii,vector<pii>,greater<pii>>pq;//{距离,点}
void Dijkstra(int n,int s){
    memset(dis,63,sizeof(dis));
   	memset(vis,false,sizeof(vis));
    while(pq.size())
        pq.pop();
    dis[s]=0;
    pq.push({0,s});
    while(pq.size()){
        pii tmp=pq.top();
        pq.pop();
        if(vis[tmp.second])
            continue;
        vis[tmp.second]=true;
        for(auto [it,w]:G[tmp.second]){
            if(dis[it]>dis[tmp.second]+w){
                dis[it]=dis[tmp.second]+w;
                pq.push({dis[it],it});
            }
        }
    }
}

暴力实现

复杂度$O(n^2)$

int dis[N];
bool vis[N];
void Dijkstra(int n,int s){
    memset(dis,0x3f,sizeof(dis));
    dis[s]=0;
    for(int i=1;i<=n;i++){
        int k=0,m=1e15;
        for(int j=1;j<=n;j++){
            if(!vis[j]&&dis[j]<m){
                k=j;m=dis[j];
            }
        }
        vis[k]=1;
        for(auto [it,w]:G[k])
            dis[it]=min(dis[it],dis[k]+w);
    }
}

差分约束

$n$个变量$x_1,x_2,\dots,x_n$以及$m$个约束条件$x_i-x_j\le c_k$

约束是否有解,如果有解,给出一组解

$x_i-x_j\le c_k\iff x_i\le x_j+c_k$,类比单源最短路中的三角形不等式 $dist[y]\le dist[x]+z$

将$j$向$i$连长度为$c_k$的有向边,设超级源点$0$,向每个点连一条权为$0$的有向边,跑spfa,若图中有负环,则无解;否则$x_i=dist[i]$就是一组解

缩点

将强连通分量缩为一个点,原图变为DAG

Tarjan缩点

$$num[N],low[N]$$

  • $$num$$值:dfs时这个点的时间戳
  • $$low$$值:能返回的最远祖先的时间戳

相同$low$值的属于一个$SCC$,在dfs的同时把点按$SCC$分开

复杂度$O(n+m)$

const int N=1e4+5;
int a[N];//点权
vector<int>G[N];
int low[N],num[N],dfn,id[N];
int cnt,v[N];
stack<int>st;
void dfs(int x){
    low[x]=num[x]=++dfn;
    st.push(x);
    for(auto it:G[x]){
        if(!num[it]){
            dfs(it);
            low[x]=min(low[x],low[it]);
        }
        else if(!id[it])
            low[x]=min(low[x],num[it]);
    }
    if(low[x]==num[x]){
        cnt++;
        while(true){
            int tmp=st.top();
            st.pop();
            v[cnt]+=a[tmp];
            id[tmp]=cnt;
            if(x==tmp)
                break;
        }
    }
}
void Tarjan(int n){
    dfn=cnt=0;
    memset(low,0,sizeof(low));
    memset(num,0,sizeof(num));
    memset(id,0,sizeof(id));
    while(st.size())
        st.pop();
    for(int i=1;i<=n;i++)
        if(!num[i])
            dfs(i);
}
Kosaraju缩点
  1. 原图的反图(边的方向取反)的连通性不变

  2. 按原图的dfs的逆序开始dfs反图,可以将强连通分量挖出来

复杂度$$O(n+m)$$

const int N=1e4+5;
int a[N];
vector<int>G[N],rG[N];
vector<int>S;
bool vis[N];
int cnt,id[N];
void dfs1(int x){
    if(vis[x])
        return;
    vis[x]=true;
    for(auto it:G[x])
        dfs1(it);
    S.push_back(x);
}
int d[N],v[N];
void dfs2(int x){
    if(id[x])
        return;
    id[x]=cnt;
    v[cnt]+=a[x];
    for(auto it:rG[x])
        dfs2(it);
}
void Korasaju(int n){
    memset(vis,false,sizeof(vis));
    memset(id,0,sizeof(id));
    cnt=0;
    S.clear();
    for(int i=1;i<=n;i++)
        dfs1(i);
    reverse(S.begin(),S.end());
    for(auto it:S){
        if(!id[it]){
            cnt++;
            dfs2(it);
        }
    }
}

2-SAT

$n$个集合,每个集合两个元素,已知若干个$<a,b>$,表示$a$与$b$矛盾($a,b$属于不同集合),从每个集合选一个元素,判断能否选$n$个两两不矛盾的元素

可以变为布尔方程,选$a$则必选$b$,则连$a\rightarrow b$的有向边,在图上缩点之后判断是否有一个集合中的两个数在一个$SCC$里

树链剖分

重链剖分
  • $id[x]$:$x$点的$dfs$序
  • $rk[x]$:$dfs$序为$x$的节点
  • $top[x]$:$x$所在重链的顶部节点
int sz[N],top[N],rk[N],id[N],son[N],fa[N],deep[N];
vector<int>G[N];
void dfs1(int x,int f){
    sz[x]=1;
    fa[x]=f;
    deep[x]=deep[f]+1;
    for(auto it:G[x]){
        if(it==f)
            continue;
        dfs1(it,x);
        sz[x]+=sz[it];
        if(!son[x]||sz[son[x]]<sz[it])
            son[x]=it;
    }
}
void dfs2(int x,int topx){
    top[x]=topx;
    id[x]=++num;
    rk[num]=x;
    if(!son[x])
        return;
    dfs2(son[x],topx);
    for(auto it:G[x]){
        if(it!=fa[x]&&it!=son[x])
            dfs2(it,it);
    }
}
dfs1(root,0);
dfs2(root,root);
树上区间修改/查询
struct SegmentTree{
    int a[N],tree[N<<2],tag[N<<2];
    int ls(int p){return p<<1;}
    int rs(int p){return p<<1|1;}
    void push_up(int p){
        tree[p]=tree[ls(p)]+tree[rs(p)];
        tree[p]%=mod;
    }
    void build(int p,int pl,int pr){
        tag[p]=0;
        if(pl==pr){
            tree[p]=a[rk[pl]];
            return;
        }
        int mid=(pl+pr)>>1;
        build(ls(p),pl,mid);
        build(rs(p),mid+1,pr);
        push_up(p);
    }
    void addtag(int p,int pl,int pr,int d){
        tag[p]+=d;
        tree[p]+=d*(pr-pl+1);
        tree[p]%=mod;
    }
    void push_down(int p,int pl,int pr){
        if(tag[p]){
            int mid=(pl+pr)>>1;
            addtag(ls(p),pl,mid,tag[p]);
            addtag(rs(p),mid+1,pr,tag[p]);
            tag[p]=0;
        }
    }
    void update(int L,int R,int p,int pl,int pr,int d){
        if(L<=pl&&pr<=R){
            addtag(p,pl,pr,d);
            return;
        }
        push_down(p,pl,pr);
        int mid=(pl+pr)>>1;
        if(L<=mid)
            update(L,R,ls(p),pl,mid,d);
        if(R>mid)
            update(L,R,rs(p),mid+1,pr,d);
        push_up(p);
    }
    int query(int L,int R,int p,int pl,int pr){
        if(L<=pl&&pr<=R)
            return tree[p];
        push_down(p,pl,pr);
        int mid=(pl+pr)>>1;
        int ans=0;
        if(L<=mid)
            ans+=query(L,R,ls(p),pl,mid);
        if(R>mid)
            ans+=query(L,R,rs(p),mid+1,pr);
        return ans;
    }
}Tr;
void add_range(int x,int y,int d){
    while(top[x]!=top[y]){
        if(deep[top[x]]<deep[top[y]])
            swap(x,y);
        Tr.update(id[top[x]],id[x],1,1,n,d);
        x=fa[top[x]];
    }
    if(deep[x]>deep[y])
        swap(x,y);
    Tr.update(id[x],id[y],1,1,n,d);
}
int query_range(int x,int y){
    int ans=0;
    while(top[x]!=top[y]){
        if(deep[top[x]]<deep[top[y]])
            swap(x,y);
        ans+=Tr.query(id[top[x]],id[x],1,1,n);
        ans%=mod;
        x=fa[top[x]];
    }
    if(deep[x]>deep[y])
        swap(x,y);
    ans+=Tr.query(id[x],id[y],1,1,n);
    return ans%mod;
}
void add_tree(int x,int d){
    Tr.update(id[x],id[x]+sz[x]-1,1,1,n,d);
}
int query_tree(int x){
    return Tr.query(id[x],id[x]+sz[x]-1,1,1,n)%mod;
}

树上启发式合并(DSU on tree)

常用于不带修子树询问

对于节点$i$

  • 递归轻儿子,消除递归的影响
  • 递归重儿子,不消除递归的影响
  • 统计所有轻儿子对答案的影响
  • 更新该节点答案
  • 删除所有轻儿子对答案的影响

主题框架:

void dfs(int x,int fa,int opt){
    for(auto it:G[x]){
        if(it==fa)
            continue;
       	if(it!=son[x])
            dfs(it,x,0);//暴力统计轻边的贡献
    }
    if(son[x])	dfs(son[x],x,1);//统计重儿子的贡献,不消除影响
    add(x);//暴力统计所有轻儿子的贡献
    ans[x]=NowAns;//更新答案
    if(!opt)	delet(x);//需要删除贡献的话就删掉
}

示例代码:

int c[N],sz[N],son[N],cnt[N],sum,Mx,Son,ans[N];
vector<int>G[N];
void dfs1(int x,int f){
    sz[x]=1;
    for(auto it:G[x]){
        if(it==f)
            continue;
        dfs1(it,x);
        sz[x]+=sz[it];
        if(!son[x]||sz[son[x]]<sz[it])
            son[x]=it;
    }
}
void add(int x,int f,int val){
    cnt[c[x]]+=val;
    if(cnt[c[x]]>Mx){
        Mx=cnt[c[x]];
        sum=c[x];
    }
    else if(cnt[c[x]]==Mx)
        sum+=c[x];
    for(auto it:G[x]){
        if(it==f||it==Son)
            continue;
        add(it,x,val);
    }
}
void dfs2(int x,int f,int opt){
    for(auto it:G[x]){
        if(it==f||it==son[x])
            continue;
        dfs2(it,x,0);
    }
    if(son[x]){
        dfs2(son[x],x,1);
        Son=son[x];
    }
    add(x,f,1);Son=0;
    ans[x]=sum;
    if(!opt){
        add(x,f,-1);
        Mx=sum=0;
    }
}

网络流

二分图匹配
vector<int> G[N];
int Nx,Ny,k; //Nx,Ny是两个集合的大小;k是边数

int Mx[N],My[N];
int dx[N],dy[N];
int dis,u,v;
bool used[N];
bool searchP(){
    queue<int> Q;
    dis = INF;
    memset(dx,-1,sizeof(dx));
    memset(dy,-1,sizeof(dy));
    for(int i = 0;i < Nx;++i)
    if(Mx[i] == -1)    Q.push(i), dx[i] = 0;
    while(!Q.empty()){
        int u = Q.front();Q.pop();
        if(dx[u] > dis) break;
        int sz = G[u].size();
        for(int i = 0;i < sz;++i){
            int v = G[u][i];
            if(dy[v] == -1) {
                dy[v] = dx[u] + 1;
                if(My[v] == -1) dis = dy[v];
                else dx[My[v]] = dy[v] + 1, Q.push(My[v]);
            }
        }
    }
    return dis != INF;
}
bool DFS(int u){
    int sz = G[u].size();
    for(int i = 0;i < sz;++i){
        int v = G[u][i];
        if(!used[v] && dy[v] == dx[u] + 1){
            used[v] = true;
            if(My[v] != -1 && dy[v] == dis) continue;
            if(My[v] == -1 || DFS(My[v])){
                My[v] = u;
                Mx[u] = v;
                return true;
            }
        } 
    }
    return false;
}
int MaxMatch(){
    int res = 0;
    memset(Mx,-1,sizeof(Mx));
    memset(My,-1,sizeof(My));
    while(searchP()){
        memset(used,false,sizeof(used));
        for(int i = 0;i < Nx;++i)
        if(Mx[i] == -1 && DFS(i)) ++res;
    }
    return res;
}
int main(){
    read(Nx);read(Ny);read(k);
    while(k--){read(u);read(v);if(v<=Ny) G[u-1].push_back(v-1);}
    printf("%d\n",MaxMatch());
}

树哈希

$$ f(S)=(c+\sum_{x\in S}g(x))\mod m $$

$$ 一般取c=1,\ g为整数到整数的映射 $$

const ull mask = std::chrono::steady_clock::now().time_since_epoch().count();
ull shift(int x){
    x^=x<<13;
    x^=x>>7;
    x^=x<<17;
    x^=mask;
    return x;
}
ull Hash[N];
set<ull>st;
void dfs(int x,int f){
    Hash[x]=1;
    for(auto it:G[x]){
        if(it==f)
            continue;
        dfs(it,x);
        Hash[x]+=shift(Hash[it]);
    }
    st.insert(Hash[x]);
}
凯莱公式

完全图$K_n$有$n^{n-2}$棵生成树

生成森林连成生成树的方案数

$n$个点$m$条边的带标号无向图有$k$个连通块,加$k-1$条边连通,每个连通块的点数为$s_i(i=1,2,\cdots,k)$

方案数:$n^{k-2}\cdot\Pi_{i=1}^ks_i$

数学

常见数论函数

欧拉函数

$$ \varphi(x)=x\cdot \Pi(1-\frac{1}{p_i}) $$

性质

$$ \phi(x)=\sum_{d\mid n}\frac{\mu(d)}{d} $$

费马小定理

$$ p\in Prim\Rightarrow a^{p-1}\equiv 1\mod p $$

欧拉定理

$$ (a,m)=1\Rightarrow a^{\phi(m)}\equiv 1\mod m $$

扩展欧拉定理

$$ a^b\equiv a^{b\mod \phi(m)+\phi(m)}\mod m \ \ (b\ge\phi(m)) $$

高斯消元

namespace Gauss{
    const int N=1e3+5;
    double eps=1e-7;
    bool solve(double a[N][N],int n){//n+1行为 Ax=b 矩阵方程右侧向量,运算后结果在 n+1 行
        for(int i=1;i<=n;i++){
            double M=0;
            int Mi=0;
            for(int j=i;j<=n;j++){
                if(fabs(a[j][i])>M){
                    M=fabs(a[j][i]);
                    Mi=j;
                }
            }
            for(int j=i;j<=n+1;j++)
                swap(a[Mi][j],a[i][j]);
            if(fabs(a[i][i])<eps){//无解
                return false;
            }
            for(int j=n+1;j>=i;j--)
                a[i][j]/=a[i][i];
            for(int j=1;j<=n;j++){
                if(j==i)
                    continue;
                double temp=a[j][i]/a[i][i];
                for(int k=i;k<=n+1;k++)
                    a[j][k]-=temp*a[i][k];
            }
        }
        return true;
    }
}

GCD

欧几里得算法
int gcd(int a,int b)
{
    return b?gcd(b,a%b):a;
}
更相损减术

$$ \gcd(a,b)=\gcd(b,a-b)=\gcd(a,a-b) $$

int gcd(int a,int b)
{
    while(a!=b)
    {
        if(a>b)	a=a-b;
        else	b=b-a;
    }
    return a;
}

LCM

int lcm(int a,int b)
{
    return a/gcd(a,b)*b;
}

扩展欧几里得

返回$$ d=gcd(a,b) $$ ;以及$$ax+by=d$$的特解$$x_0,y_0$$

通解: $$ x=\frac{c}{d}x_0+\frac{b}{d}t, \ y=\frac{c}{d}y_0-\frac{a}{d}t $$

ll extend_gcd(ll a,ll b,ll &x,ll &y)
{
    if(b==0){x=1;y=0;return a;}
    ll d=extend_gcd(b,a%b,y,x);
    y-=a/b*x;
    return d;
}

逆元

扩展欧几里得
ll mod_inverse(ll a,ll m)
{
	ll x,y;
    extend_gcd(a,m,x,y);
    return (x%m+m)%m;
}
快速幂

$$ a^{-1}\equiv a^{p-2}\mod p $$

ll mod_inverse(ll a,ll m)
{
    return qpow(a,m-2,m);
}
递推

求$$1-n$$的所有逆元

void mod_inverse(ll n,ll p)
{
    inv[1]=1;
    for(int i=1;i<=n;i++)
        inv[i]=(ll)(p-p/i)*inv[p%i]%p;
}

埃氏筛法

bitset<N>vis;
void get_prime(int n)
{
    for(int i=2;i<=n;i++)
    {
        if(!vis[i])
        {
            vis[i]=true;
            p.push_back(i);
            for(int j=i*i;j<=n;j+=i)
                vis[j]=1;
        }
    }
}

欧拉筛

筛素数
bool vis[N];
vector<int>p;
void init(int n){
    for(int i=2;i<=n;i++){
        if(!vis[i])
            p.push_back(i);
        for(auto it:p){
            if(1ll*i*it>n)
                break;
            vis[i*it]=1;
            if(i%it==0)
                break;
        }
    }
}
筛欧拉函数
bool vis[N];
int phi[N];
vector<int>p;
void get_phi()
{
    phi[1]=1;
    for(int i=2;i<N;i++)
    {
        if(!vis[i])
        {
            vis[i]=true;
            p.push_back(i);
            phi[i]=i-1;
        }
        for(auto p:p)
        {
            if(i*p>=N)
                break;
            vis[i*p]=true;
            if(i%p==0)
            {
                phi[i*p]=p*phi[i];
                break;
            }
            phi[i*p]=phi[i]*phi[p];
        }
    }
}
筛约数和
vector<int>p;
int phi[N],sig[N],num[N];
bool vis[N];
void init()
{
    phi[1]=sig[1]=1;
    for(int i=2;i<N;i++)
    {
        if(!vis[i])
        {
            vis[i]=true;
            p.push_back(i);
            phi[i]=i-1;
            sig[i]=num[i]=i+1;
        }
        for(auto j:p)
        {
            if(i*j>=N)
                break;
            vis[i*j]=true;
            if(i%j==0)
            {
                phi[i*j]=phi[i]*j;
                num[i*j]=num[i]*j+1;
                sig[i*j]=sig[i]/num[i]*num[i*j];
                break;
            }
            phi[i*j]=phi[i]*phi[j];
            num[i*j]=1+j;
            sig[i*j]=sig[i]*sig[j];
        }
    }
}

素数判定

Miller Rabin

复杂度$$O(k\log n)$$

bool is_prime(int x)
{
    if(x<3)
        return x==2;
    if(x%2==0)
        return false;
    int A[]={2,325,9375,28178,450775,9780504,1795265022},d=x-1,r=0;
    while(d%2==0)
        d>>=1,r++;
    for(auto a:A)
    {
        int v=qpow(a,d,x);
        if(v<=1||v==x-1)
            continue;
        for(int i=0;i<r;i++)
        {
            v=(__int128_t)v*v%x;
            if(v==x-1&&i!=r-1)
            {
                v=1;break;
            }
            if(v==1)
                return false;
        }
        if(v!=1)
            return false;
    }
    return true;
}

质因数分解

Pollard Rho

找出一个约数的时间复杂度$$O(n^{\frac{1}{4}})$$

mt19937_64 rnd(time(0));
namespace Pollard_Rho
{
    #define ldb long double
    long long mul(long long x, long long y, long long mod)
    {
        return ((x * y - (long long)((ldb)x / mod * y) * mod) + mod) % mod;
    }
    long long gcd(long long a, long long b)
    {
        return (b == 0 ? a : gcd(b, a % b));
    }
    long long ksm(long long a, long long b, long long mod)
    {
        long long ans = 1; a %= mod;
        while (b) {if (b & 1)ans = mul(ans, a, mod); b >>= 1; a = mul(a, a, mod);}
        return ans;
    }
    int pr[15] = {2, 3, 5, 7, 11, 13, 17, 19, 23, 29, 31, 37};
    bool Miller_Rabin(long long n)
    {
        if (n == 2 || n == 3)return 1;
        if (n % 2 == 0 || n == 1)return 0;
        long long d = n - 1;
        int s = 0;
        while (d % 2 == 0)s ++, d >>= 1;
        for (int i = 0; i <= 11; i ++)
        {
            if (pr[i] >= n)break;
            long long a = pr[i];
            long long x = ksm(a, d, n);
            long long y = 0;
            for (int j = 0; j <= s - 1; j ++)
            {
                y = mul(x, x, n);
                if (y == 1 && x != 1 && x != (n - 1))return 0;
                x = y;
            }
            if (y != 1)return 0;
        }
        return 1;
    }
    long long Pollard_Rho(long long n)
    {
        long long now, pre, g;
        while (true)
        {
            now = pre = rnd() % (n - 1) + 1;
            g = 1;
            long long c = rnd() % (n - 1) + 1;
            for (int i = 1, fst = 1 ;; i ++)
            {
                now = (mul(now, now, n) + c) % n;
                g = mul(g, abs(now - pre), n);
                if (now == pre || !g)break;
                if (!(i & 127) || i == fst)
                {
                    g = gcd(g, n);
                    if (g > 1)return g;
                    if (i == fst)pre = now, fst <<= 1;
                }
            }
        }
    }
    void Find(long long n, map<long long, long long>& _P, int c = 1)
    {
        if (n == 1)return ;
        if (Miller_Rabin(n))
        {
            _P[n] += c;
            return;
        }
        long long p = Pollard_Rho(n);
        int cnt = 0;
        while (!(n % p))
        {
            n /= p, cnt ++;
        }
        Find(p, _P, cnt * c);
        Find(n, _P, c);
    }
}

离散对数

bsgs

对$$a,b\in Z^+$$,可以以$$O(\sqrt{m})$$的复杂度内求解 $$ a^x\equiv b\mod m $$ 其中$$(a,m)=1$$,解$$0\le x<m$$,$$m$$不一定是素数

取$$x=A\lceil\sqrt{m}\rceil -B$$,其中$$0\le A,B\le \lceil\sqrt{m}\rceil$$,有$$a^{A\lceil\sqrt{m}\rceil-B}\equiv b\mod m$$

$$\iff a^{A\lceil\sqrt{m}\rceil}\equiv ba^B\mod m$$

同时枚举左右两边,用hashmap存,可以$$O(\sqrt{m})$$的复杂度内解决

ll BSGS(ll a, ll b, ll m)
{
    static unordered_map<ll, ll> hs;
    hs.clear();
    ll cur = 1, t = sqrt(m) + 1;
    for (int B = 1; B <= t; ++B)
    {
        (cur *= a) %= m;
        hs[b * cur % m] = B; // 哈希表中存B的值
    }
    ll now = cur; // 此时cur = a^t
    for (int A = 1; A <= t; ++A)
    {
        auto it = hs.find(now);
        if (it != hs.end())
            return A * t - it->second;
        (now *= cur) %= m;
    }
    return -1; // 没有找到,无解
}
扩展bsgs

$$a,m$$不一定互质

// 修改版的BSGS,额外带一个系数
ll BSGS(ll a, ll b, ll m, ll k = 1)
{
    static unordered_map<ll, ll> hs;
    hs.clear();
    ll cur = 1, t = sqrt(m) + 1;
    for (int B = 1; B <= t; ++B)
    {
        (cur *= a) %= m;
        hs[b * cur % m] = B; // 哈希表中存B的值
    }
    ll now = cur * k % m;
    for (int A = 1; A <= t; ++A)
    {
        auto it = hs.find(now);
        if (it != hs.end()) return A * t - it->second;
        (now *= cur) %= m;
    }
    return -INF; // 这里因为要多次加1,要返回更小的负数
}
ll exBSGS(ll a, ll b, ll m, ll k = 1)
{
    ll A = a %= m, B = b %= m, M = m;
    if (b == 1) return 0;
    ll cur = 1 % m;
    for (int i = 0;; i++)
    {
        if (cur == B) return i;
        cur = cur * A % M;
        ll d = gcd(a, m);
        if (b % d) return -INF;
        if (d == 1) return BSGS(a, b, m, k * a % m) + i + 1;
        k = k * a / d % m, b /= d, m /= d; // 相当于在递归求解exBSGS(a, b / d, m / d, k * a / d % m)
    }
}

组合数

$$ (^n_m)=C_n^m=\frac{P_n^m}{P_m}=\frac{n!}{m!(n-m)!} $$

组合恒等式

$$ C_n^k=C_n^{m-k} $$

$$ C_{n+1}^k=C_n^k+C_n^{k-1} $$

$$ (C_n^0)^2+(C_n^1)^2+(C_n^2)^2+...+(C_n^n)^2=C_{2n}^n=\frac{(2n)!}{(n!)^2} $$

$$ C_{-n}^k=\frac{(-n)(-n-1)(-n-2)...(-n-k+1)}{k!}=(-1)^kC_{n+k-1}^{k} $$

预处理阶乘
void init(int n)
{
    fac[0]=1;
    for(int i=1;i<=n;i++)
        fac[i]=fac[i-1]*i%mod;
   	rev[n]=qpow(fac[n],mod-2,mod);//n must be less than mod
    for(int i=n;i>=1;i--)
        rev[i-1]=rev[i]*i%mod;
   	assert(rev[0]==1);
}

Lucas

$$ p\in Prim,\ C_n^m\equiv C_{n/p}^{m/p}\cdot C_{n%p}^{m%p}\mod p $$

模数较小,但组合数很大

推论:

$$ m,n\in Z^+,p\in Prim,\ C_n^m\equiv \Pi_{i=0}^kC_{n_i}^{m_i} $$

$$ m=m_kp^k+\dots+m_1p+m_0,\ n=n_kp^k+\dots+n_1p+n_0 $$

int C(int n,int m,int p)
{
    if(m>n)
        return 0;
    return fac[n]*rev[m]%p*rev[n-m]%p;
}
int Lucas(int n,int m,int p)
{
    if(m==0)
        return 1;
    return C(n%p,m%p,p)*Lucas(n/p,m/p,p)%p;
}

Wilson定理

$$ p\in Prim,\ (p-1)!\equiv -1\mod p $$

中国剩余定理

$$ \begin{align*} x\equiv a_1 \mod m_1 \\ x\equiv a_2 \mod m_2 \\ \vdots \\ x\equiv a_k \mod m_k \end{align*} $$

其中$$m_i,m_j$$两两互质

设: $$ M=\Pi_{i=1}^km_i,\ M_i=\frac{M}{m_i},\ M_i^{-1}\cdot M_i\equiv 1\mod m_i $$ 方程组在模$$M$$意义下有唯一解 $$ x\equiv \sum_{i=1}^ka_iM_iM_i^{-1}\mod M $$

升幂引理(LTE)

$$v_p(n)$$为$$n$$的标准分解中质因数$$p$$的幂次,即$$v_p(n)$$满足$$p^{v_p(n)}\mid n$$且$$p^{v_p(n)+1}\nmid n$$

以下设$$p\in Prim,x,y\in Z,p\nmid x,p\nmid y,n\in Z^+$$

  • 第一部分:$$p\in Prim,(n,p)=1$$

    1. 若$$p\mid (x-y)$$,则 $$ v_p(x^n-y^n)=v_p(x-y) $$

    2. 若$$p\mid (x+y),n奇$$,则 $$ v_p(x^n+y^n)=v_p(x+y) $$

  • 第二部分:$$p$$奇素数

    1. 若$$p\mid (x-y)$$,则 $$ v_p(x^n-y^n)=v_p(x-y)+v_p(n) $$

    2. 若$$p\mid (x+y)$$,则对奇数$$n$$有 $$ v_p(x^n+y^n)=v_p(x+y)+v_p(n) $$

  • 第三部分:$$p=2$$且$$p\mid (x-y)$$

    1. 对奇数$$n$$有 $$ v_p(x^n-y^n)=v_p(x-y) $$

    2. 对偶数$$n$$有 $$ v_p(x^n-y^n)=v_p(x-y)+v_p(x+y)+v_p(n)-1 $$

类欧几里得

$$ f(x)=\frac{ax+b}{c}, 求x\in [0,n]且x\in Z时, f(x)下的整点个数之和 $$

$$ f(a,b,c,n)=\sum_{i=0}^n \lfloor\frac{ai+b}{c}\rfloor $$

时间复杂度$$O(\log n)$$

ll f(ll a, ll b, ll c, ll n) {
	if (!a) return b / c * (n + 1);
	if (a >= c || b >= c)
		return f(a % c, b % c, c, n) + (a / c) * n * (n + 1) / 2 + (b / c) * (n + 1);
	ll m = (a * n + b) / c;
	return n * m - f(c, c - b - 1, a, m - 1);
}

定义

若满足$$a^n\equiv 1\mod m$$的最小正整数$n$存在,这个$$n$$称为$$a$$模$$m$$的阶,记作$$n=\delta_m(a)$$或$$ord_m(a)$$

性质
  • $$a,a^2,\dots,a^{\delta_m(a)}$$模$$m$$两两不同余

  • 若$$a^n\equiv 1\mod m$$,则$$\delta_m(a)\mid n$$

  • $$a^p\equiv a^q\Rightarrow p\equiv q\mod \delta_m(a)$$

  • $$m\in N^*,a,b\in Z,(a,m)=(b,m)=1$$,则 $$ \delta_m(ab)=\delta_m(a)\delta_m(b)\iff (\delta_m(a),\delta_m(b))=1 $$

  • $$k\in N,m\in N^*,a\in Z,(a,m)=1$$,则 $$ \delta_m(a^k)=\frac{\delta_m(a)}{(\delta_m(a),k)} $$

原根

定义

若$$(g,m)=1$$且$$\delta_m(g)=\phi(m)$$,则称$$g$$为模$$m$$的原根

性质

若一个数$$m$$有原根,则它原根的个数为$$\phi(\phi(m))$$

原根存在定理

一个数$$m$$存在原根当且仅当$$m=2,4,p^\alpha,2p^\alpha$$,其中$$p$$为奇素数,$$\alpha\in N^*$$

莫比乌斯反演

莫比乌斯函数

$$ \mu(n)= \begin{cases} 1 & n=1\\ 0 & n含有平方因子\\ (-1)^k & k为n的本质不同质因子个数 \end{cases} $$

性质
  • 积性函数

  • $$ \sum_{d\mid n}\mu(d)= \begin{cases} 1 & n=1\ 0 & n\not = 1 \end{cases} \iff \sum_{d\mid n}\mu(d)=\varepsilon(n)=[n==1],\ \mu *1=\varepsilon $$

  • $$ [gcd(i,j)==1]=\sum_{d\mid gcd(i,j)}\mu(d) $$

莫比乌斯变换

设$$f(n),g(n)$$为数论函数 $$ f(n)=\sum_{d\mid n}g(d)\Rightarrow g(n)=\sum_{d\mid n}\mu(d)f(\frac{n}{d}) $$ $$f(n)$$称为$$g(n)$$的莫比乌斯变换,$$g(n)$$称为$$f(n)$$的莫比乌斯逆变换(反演) $$ f(n)=\sum_{n\mid d}g(d)\Rightarrow g(n)=\sum_{n\mid d}\mu(\frac{d}{n})f(d) $$

BM线性递推

#include<bits/stdc++.h>
using namespace std;
typedef long long ll;
#define int long long
typedef unsigned long long ull;
#define dmp(x) cerr<<"DEBUG"<<__LINE__<<":"<<#x<<" "<<x<<endl
const int INF=0x3f3f3f3f;
typedef pair<int,int> pii;
const int mod=1e9+7;
int powmod(int a,int b){
    int res=1;a%=mod;
    assert(b>=0);
    while(b)
    {
        if(b&1) res=res*a%mod;
        a=a*a%mod;
    }
    return res;
}
int n;
namespace linear_seq{
    const int N=10010;
    int res[N],base[N],_c[N],_md[N];
    vector<int>Md;
    void mul(int *a,int *b,int k){
        for(int i=0;i<k+k;i++)  _c[i]=0;
        for(int i=0;i<k;i++)
            if(a[i])
                for(int j=0;j<k;j++)
                    _c[i+j]=(_c[i+j]+a[i]*b[j])%mod;
        for(int i=k+k-1;i>=k;i--)
            if(_c[i])
                for(int j=0;j<(int)Md.size();j++)
                    _c[i-k+Md[j]]=(_c[i-k+Md[j]]-_c[i]*_md[Md[j]])%mod;
        for(int i=0;i<k;i++)
            a[i]=_c[i];
    }
    int solve(int n,vector<int>a,vector<int>b){
        int ans=0,pnt=0;
        int k=(int)a.size();
        assert(a.size()==b.size());
        for(int i=0;i<k;i++)
            _md[k-1-i]=-a[i];
        _md[k]=1;
        Md.clear();
        for(int i=0;i<k;i++)
            if(_md[i]!=0)
                Md.push_back(i);
        for(int i=0;i<k;i++)
            res[i]=base[i]=0;
        res[0]=1;
        while((1ll<<pnt)<=n)
            pnt++;
        for(int p=pnt;p>=0;p--){
            mul(res,res,k);
            if((n>>p)&1){
                for(int i=k-1;i>=0;i--)
                    res[i+1]=res[i];
                res[0]=0;
                for(int j=0;j<(int)Md.size();j++)
                    res[Md[j]]=(res[Md[j]]-res[k]*_md[Md[j]])%mod;
            }
        }
        for(int i=0;i<k;i++)
            ans=(ans+res[i]*b[i])%mod;
        if(ans<0)
            ans+=mod;
        return ans;
    }
    vector<int> BM(vector<int> s){
        vector<int> C(1,1),B(1,1);
        int L=0,m=1,b=1;
        for(int i=0;i<(int)s.size();i++){
            int d=0;
            for(int i=0;i<L+1;i++)
                d=(d+C[i]*s[n-i])%mod;
            if(d==0)
                ++m;
            else if(2*L<=n){
                vector<int> T=C;
                int c=mod-d*powmod(b,mod-2)%mod;
                while(C.size()<B.size()+m)
                    C.push_back(0);
                for(int i=0;i<B.size();i++)
                    C[i+m]=(C[i+m]+c*B[i])%mod;
                L=n+1-L;B=T;b=d;m=1;
            }
            else{
                int c=mod-d*powmod(b,mod-2)%mod;
                while(C.size()<B.size()+m)
                    C.push_back(0);
                for(int i=0;i<B.size();i++)
                    C[i+m]=(C[i+m]+c*B[i])%mod;
                ++m;
            }
        }
        return C;
    }
    int gao(vector<int>a,int n){
        vector<int> c=BM(a);
        c.erase(c.begin());
        for(int i=0;i<c.size();i++)
            c[i]=(mod-c[i])%mod;
        return solve(n,c,vector<int>(a.begin(),a.begin()+(int)c.size()));
    }
}
signed main() {
    ios::sync_with_stdio(false);cin.tie(0);
    vector<int>v;
    v.push_back(2);
    v.push_back(24);
    v.push_back(96);
    v.push_back(416);
    v.push_back(1536);
    v.push_back(5504);
    v.push_back(18944);
    v.push_back(64000);
    v.push_back(212992);
    v.push_back(702464);
    cin>>n;
    cout<<linear_seq::gao(v,n-1)<<"\n";
    return 0;
}

斐波那契数

$$ F_n=F_{n-1}+F_{n-2},\ F_0=0,F_1=1 $$

性质
  • $$ F_{n-1}F_{n+1}-F_n^2=(-1)^n $$

  • $$ F_{n+k}=F_kF_{n+1}+F_{k-1}F_n $$

  • $$ F_{2n}=F_n(F_{n+1}+F_{n-1}) $$

  • $$ a\mid b\iff F_a\mid F_b $$

  • $$ gcd(F_m,F_n)=F_{gcd(m,n)} $$

卡特兰(Catalan)数

$$ H_n=\frac{C_{2n}^n}{n+1} ,\ n\ge 2,n\in N^+,\ H_0=H_1=1 $$

$$ H_n= \begin{cases} \sum_{i=1}^nH_{i-1}H_{n-i} & n\ge 2,n\in N^+\\ 1 & n=0,1 \end{cases} $$

$$ H_n=\frac{H_{n-1}(4n-2)}{n+1} $$

$$ H_n=C_{2n}^n-C_{2n}^{n-1} $$

封闭形式

$$ H(x)=\frac{1-\sqrt{1-4x}}{2x}=\sum_{n\ge 0}C_{2n}^n\frac{1}{n+1}x^n $$

典型问题
  • 有$$2n$$个人排成一行进入剧场。入场费 5 元。其中只有$$n$$个人有一张 5 元钞票,另外$$n$$人只有 10 元钞票,剧院无其它钞票,问有多少种方法使得只要有 10 元的人买票,售票处就有 5 元的钞票找零?
  • 一位大城市的律师在她住所以北$$n$$个街区和以东$$n$$个街区处工作。每天她走$$2n$$个街区去上班。如果他从不穿越(但可以碰到)从家到办公室的对角线,那么有多少条可能的道路?
  • 在圆上选择$$2n$$个点,将这些点成对连接起来使得所得到的$$n$$条线段不相交的方法数?
  • 对角线不相交的情况下,将一个凸多边形区域分成三角形区域的方法数?
  • 一个栈(无穷大)的进栈序列为$$1,2,\dots,n$$,有多少个不同的出栈序列?
  • $$n$$个结点可构造多少个不同的二叉树?
  • $$n$$个$$+1$$和$$n$$个$$-1$$构成$$2n$$项 $$a_1,a_2,\dots,a_{2n}$$,其部分和满足$$a_1+a_2+\dots+a_k\ge 0(k=1,2,3,\dots,2n)$$,序列个数为?

斯特林数

第二类斯特林数(斯特林子集数)

$$S(n,k)$$表示将$$n$$个两两不同的元素,划分为$$k$$个互不区分的非空子集的方案数 $$ S(n,k)=S(n-1,k-1)+k\cdot S(n-1,k),\ S(n,0)=[n==0] $$

$$ S(n,m)=\sum_{i=0}^m\frac{(-1)^{m-i}i^n}{i!(m-i)!} $$

第一类斯特林数(斯特林轮换数)

$$s(n,k)$$表示将$$n$$个两两不同的元素,划分为$$k$$个互不区分的非空轮换的方案数 $$ s(n,k)=s(n-1,k-1)+(n-1)\cdot s(n-1,k),\ s(n,0)=[n==0] $$

字符串

KMP

前缀数组
vector<int> prefix_function(string s) {
    int n = (int)s.length();
    vector<int> pi(n);
    for (int i = 1; i < n; i++) {
        int j = pi[i - 1];
        while (j > 0 && s[i] != s[j]) j = pi[j - 1];
        if (s[i] == s[j]) j++;
        pi[i] = j;
    }
    return pi;
}
模式匹配
vector<int> find_occurrences(string text, string pattern) {
    string cur = pattern + '#' + text;
    int sz1 = text.size(), sz2 = pattern.size();
    vector<int> v;
    vector<int> lps = prefix_function(cur);
    for (int i = sz2 + 1; i <= sz1 + sz2; i++) {
        if (lps[i] == sz2)
        v.push_back(i - 2 * sz2);
    }
    return v;
}

回文串

manacher

p[i]是以i为中心的最长回文串长度

int p[N<<1];
void change(string a)
{
    s+='$';s+='#';
    for(auto it:a)
    {
        s+=it;s+='#';
    }
    s+='&';
}
void manacher()
{
    int n=s.length();
    int R=0,C;
    for(int i=1;i<n;i++)
    {
        if(i<R)
            p[i]=min(p[C]+C-i,p[(C<<1)-i]);
        else
            p[i]=1;
        while(s[i+p[i]]==s[i-p[i]])
            p[i]++;
        if(p[i]+i>R)
        {
            R=p[i]+i;
            C=i;
        }
    }
}

字典树

struct Trie{//maxL是字符串总长
    int cnt=0,ch[maxL][26],sz[maxL],Cnt[maxL];//sz[maxL]是以这个点结尾的字符串数量
    int newNode(){
        cnt++;
        sz[cnt]=0;
        memset(ch[cnt],0,sizeof(ch[cnt]));
        return cnt;
    }
    void add(string s){
        int now=0;
        for(auto it:s){
            int &c=ch[now][it-'a'];
            if(!c)
                c=newNode();
            now=c;
            Cnt[now]++;
        }
        sz[now]++;
    }
    int find(string s){
        int now=0;
        for(auto it:s){
            now=ch[now][it-'a'];
            if(!now)
                return 0;
        }
        return sz[now];
    }
};

双哈

typedef pair<int, int> hashv;
const ll mod1 = 1e9 + 7;
const ll mod2 = 1e9 + 9;
hashv base = make_pair(13331, 2333);
hashv operator + (hashv a, hashv b) {
    int c1 = a.first + b.first, c2 = a.second + b.second;
    if(c1 >= mod1) c1 -= mod1;
    if(c2 >= mod2) c2 -= mod2;
    return make_pair(c1, c2);
}
hashv operator - (hashv a, hashv b) {
    int c1 = a.first - b.first, c2 = a.second - b.second;
    if(c1 < 0) c1 += mod1;
    if(c2 < 0) c2 += mod2;
    return make_pair(c1,c2);
}
hashv operator * (hashv a, hashv b) {
    return make_pair(1ll*a.first*b.first%mod1, 1ll*a.second*b.second%mod2);
}

博弈论

Nim游戏

简介

$$n$$堆物品,每堆有$$a_i$$个,两个玩家轮流取走任意一堆的任意个物品,但不能不取,取走最后一个物品的获胜

Nim和

定义Nim和$$=a_1\oplus a_2\oplus\dots\oplus a_n$$

当且仅当Nim和为0时,状态为必败状态,否则为必胜状态

SG函数

mex函数

值为不属于集合$$S$$中的最小非负整数 $$ mex(S)=\min{x}\ (x\notin S,x\in N) $$

SG函数

设状态$$x$$的后继为$$y_1,y_2,\dots,y_k$$, $$ SG(x)=mex{SG(y_1),SG(y_2),\dots,SG(y_k)} $$ 对于由$$n$$个有向图游戏组成的组合游戏,设起点分别为$$s_1,s_2,\dots,s_n$$,当且仅当$$SG(s_1)\oplus SG(s_2)\oplus\dots\oplus SG(s_n)\not =0$$时,这个游戏是先手必胜的,同时,这是一个组合游戏的游戏状态$$x$$的$$SG$$的

打表SG函数

记忆化搜索或者dp

多项式

常见的幂级数展开

$$ e^x=1+x+\frac{1}{2!}x^2+\dots +\frac{1}{n!}x^n+\dots $$

$$ (1+x)^a=1+ax+\frac{a(a-1)}{2!}x^2+\dots+\frac{a(a-1)\dots (a-n+1)}{n!}x^n+\dots $$

$$ \cos x=1-\frac{1}{2!}x^2+\frac{1}{4!}x^4+\dots+\frac{(-1)^n}{(2n)!}x^{2n}+\dots $$

$$ \sin x=x-\frac{1}{3!}x^3+\frac{1}{5!}x^5+\dots+\frac{(-1)^n}{(2n+1)!}x^{2n+1}+\dots $$

$$ \frac{1}{1+x}=1-x+x^2+\dots+(-1)^nx^n+\dots $$

$$ \ln(1+x)=x-\frac{1}{2}x^2+\frac{1}{3}x^3+\dots+\frac{(-1)^{n-1}}{n}x^n+\dots $$

$$ \frac{1}{1+x^2}=1-x^2+x^4+\dots+(-1)^nx^{2n}+\dots $$

生成函数

$$ F(x)=\sum_na_nk_n(x) $$

$$k_n(x)$$为核函数

  • 普通生成函数:$$k_n(x)=x^n$$
  • 指数生成函数:$$k_n(x)=\frac{x^n}{n!}$$
  • 狄利克雷生成函数:$$k_n(x)=\frac{1}{n^x}$$
计算方式

通常在封闭形式和展开形式间转换进行计算

  1. 对于任意多项式$$P(x),Q(x)$$,生成函数$$\frac{P(x)}{Q(x)}$$的展开式都可以用待定系数法求出

    当对分母进行因式分解但有重根时,每有一个重根就要多一个分式

    如$$G(x)=\frac{1}{(1-x)(1-2x)^2}\Rightarrow G(x)=\frac{c_0}{1-x}+\frac{c_1}{1-2x}+\frac{c_2}{(1-2x)^2}$$

  2. 牛顿二项式定理 $$ C_r^k=\frac{r(r-1)(r-2)\dots(r-k+1)}{k},\ k\in N,r\in R $$

    $$ (1+x)^\alpha=\sum_{n\ge0}C_n^\alpha x^n $$

  3. 推论: $$ \frac{1}{(1-x)^n}=\sum_{k=0}^\infin C_{n+k-1}^k x^k $$

快速傅里叶变换(FFT)

以$$O(n\log n)$$的速度计算两个$$n$$度多项式乘法

namespace FFT{
    #define el '\n'
    #define rep(i, a, b) for (int i = (a); i <= (b); i++)
    #define lop(i, a, b) for (int i = (a); i < (b); i++)
    #define dwn(i, a, b) for (int i = (a); i >= (b); i--)
    #define ceil(a, b) (a + (b - 1)) / b
    #define db double

    constexpr int N = 4e6 + 10, M = 4e6 + 10, B = 66, md = 1e9 + 7;
    const double PI = acos(-1.0), eps = 1e-8;

    int T, n, m;

    struct Complex
    {
        double x, y;
        Complex(){}
        Complex(double x,double y):x(x),y(y){}
        Complex operator+(const Complex &t) const
        {
            return {x + t.x, y + t.y};
        }
        Complex operator-(const Complex &t) const
        {
            return {x - t.x, y - t.y};
        }
        Complex operator*(const Complex &t) const
        {
            return {x * t.x - y * t.y, x * t.y + y * t.x};
        }

    } a[N], b[N];

    int rev[N], bit, tot, res[N];
    void fft(Complex a[], int inv)
    {
        for (int i = 0; i < tot; i++)
        {
            if (i < rev[i])
                swap(a[i], a[rev[i]]); //只需要交换一次就行了,交换两次等于没有换
        }
        for (int mid = 1; mid < tot; mid <<= 1)
        {
            auto w1 = Complex({cos(PI / mid), inv * sin(PI / mid)});
            for (int i = 0; i < tot; i += mid * 2)
            {
                auto wk = Complex({1, 0});                  //初始为w(0,mid),定义为w(k,mid)
                for (int j = 0; j < mid; j++, wk = wk * w1) //单位根递推式
                {
                    auto x = a[i + j], y = wk * a[i + j + mid];
                    a[i + j] = x + y, a[i + j + mid] = x - y;
                }
            }
        }
    }

    void workFFT(int n, int m)
    {// a[0, n], b[0, m]
        while ((1 << bit) < n + m + 1)
            bit++;
        tot = 1 << bit;
        for (int i = 0; i < tot; i++)
            rev[i] = (rev[i >> 1] >> 1) | ((i & 1) << (bit - 1));
        //递推(bit<<1)在bit之前,就已经被算出rev,最后一位是否为1
        fft(a, 1), fft(b, 1);
        for (int i = 0; i < tot; i++)
            a[i] = a[i] * b[i]; //点表示法直接运算
        fft(a, -1);//逆变换,点表示法转换为多项式表示法
        for (int i = 0; i <= n + m; i++)
            res[i]  = (int)(a[i].x / tot + 0.5); //向上去整
    }
}

快速数论变换(NTT)

知乎板子:

const int MOD = 998244353, G = 3;
int rev[MAXN * 3];
void ntt(int F[], int N, int sgn)
{
    int bit = __lg(N);
    for (int i = 0; i < N; ++i) // 蝴蝶变换
    {
        rev[i] = (rev[i >> 1] >> 1) | ((i & 1) << (bit - 1));
        if (i < rev[i]) swap(F[i], F[rev[i]]);
    }
    for (int l = 1, t = 1; l < N; l <<= 1, t++) // 枚举合并前的区间长度
    {
        int step = qpow(G, ((MOD - 1) >> t) * sgn + MOD - 1);
        for (int i = 0; i < N; i += l << 1) // 遍历起始点
            for (int k = i, cur = 1; k < i + l; ++k, cur = (ll)cur * step % MOD)
            {
                int g = F[k], h = (ll)F[k + l] * cur % MOD;
                F[k] = (g + h) % MOD, F[k + l] = ((g - h) % MOD + MOD) % MOD;
            }
    }
    if (sgn == -1) // 不用再在外部除以N
    {
        int invN = qpow(N, MOD - 2);
        for (int i = 0; i < N; ++i)
            F[i] = (ll)F[i] * invN % MOD;
    }
}

tarjen板子:

#include <bits/stdc++.h>
 
#define fp(i, a, b) for (int i = (a), i##_ = (b) + 1; i < i##_; ++i)
#define fd(i, a, b) for (int i = (a), i##_ = (b) - 1; i > i##_; --i)
#define file(s) freopen(s".in","r",stdin),freopen(s".out","w",stdout)
using namespace std;
const int maxn = 2e5 + 5, P = 998244353;
using arr = int[maxn];
using ll = int64_t;
/*---------------------------------------------------------------------------*/
class Cipolla {
    int P, I2{};
    using pll = pair<ll, ll>;
#define X first
#define Y second
    ll mul(ll a, ll b) const { return a * b % P; }
    pll mul(pll a, pll b) const { return {(a.X * b.X + I2 * a.Y % P * b.Y) % P, (a.X * b.Y + a.Y * b.X) % P}; }
    template<class T> T POW(T a, int b, T x) { for (; b; b >>= 1, a = mul(a, a)) if (b & 1) x = mul(x, a); return x; }
public:
    Cipolla(int p = 0) : P(p) {}
    pair<int, int> sqrt(int n) {
        int a = rand(), x;
        if (!(n %= P))return {0, 0};
        if (POW(n, (P - 1) >> 1, (int)1) == P - 1) return {-1, -1};
        while (POW(I2 = ((ll) a * a - n + P) % P, (P - 1) >> 1, (int)1) == 1) a = rand();
        x = (int) POW(pll{a, 1}, (P + 1) >> 1, {1, 0}).X;
        if (2 * x > P) x = P - x;
        return {x, P - x};
    }
#undef X
#undef Y
};
/*---------------------------------------------------------------------------*/
#define ADD(a, b) (((a) += (b)) >= P ? (a) -=P : 0) // (a += b) %= P
#define SUB(a, b) (((a) -= (b)) < 0 ? (a) += P: 0)  // ((a -= b) += P) %= P
#define MUL(a, b) ((ll) (a) * (b) % P)
//vector<int> getInv(int L) {
//    vector<int> inv(L); inv[1] = 1;
//    fp(i, 1, L - 1) inv[i] = MUL((P - P / i), inv[P % i]);
//    return inv;
//}
//auto inv = getInv(maxn); // NOLINT
int POW(ll a, int b = P - 2, ll x = 1) { for (; b; b >>= 1, a = a * a % P) if (b & 1) x = x * a % P; return x; }
//int INV(int a) { return a < maxn ? inv[a] : POW(a); }
namespace NTT {
    const int g = 3;
    vector<int> Omega(int L) {
        int wn = POW(g, P / L);
        vector<int> w(L); w[L >> 1] = 1;
        fp(i, L / 2 + 1, L - 1) w[i] = MUL(w[i - 1], wn);
        fd(i, L / 2 - 1, 1) w[i] = w[i << 1];
        return w;
    }
    auto W = Omega(1 << 21); // NOLINT
    void DIF(int *a, int n) {
        for (int k = n >> 1; k; k >>= 1)
            for (int i = 0, y; i < n; i += k << 1)
                fp(j, 0, k - 1)
                    y = a[i + j + k], a[i + j + k] = MUL(a[i + j] - y + P, W[k + j]), ADD(a[i + j], y);
    }
    void IDIT(int *a, int n) {
        for (int k = 1; k < n; k <<= 1)
            for (int i = 0, x, y; i < n; i += k << 1)
                fp(j, 0, k - 1)
                    x = a[i + j], y = MUL(a[i + j + k], W[k + j]),
                    a[i + j + k] = x - y < 0 ? x - y + P : x - y, ADD(a[i + j], y);
        int Inv = P - (P - 1) / n;
        fp(i, 0, n - 1) a[i] = MUL(a[i], Inv);
        reverse(a + 1, a + n);
    }
}
namespace Polynomial {
    using Poly = std::vector<int>;
 
    // mul/div int
    Poly &operator*=(Poly &a, int b) { for (auto &x : a) x = MUL(x, b); return a; }
    Poly operator*(Poly a, int b) { return a *= b; }
    Poly operator*(int a, Poly b) { return b * a; }
    Poly &operator/=(Poly &a, int b) { return a *= POW(b); }
    Poly operator/(Poly a, int b) { return a /= b; }
 
    // Poly add/sub
    Poly &operator+=(Poly &a, Poly b) {
        a.resize(max(a.size(), b.size()));
        fp(i, 0, b.size() - 1) ADD(a[i], b[i]);
        return a;
    }
    Poly operator+(Poly a, Poly b) { return a += b; }
    Poly &operator-=(Poly &a, Poly b) {
        a.resize(max(a.size(), b.size()));
        fp(i, 0, b.size() - 1) SUB(a[i], b[i]);
        return a;
    }
    Poly operator-(Poly a, Poly b) { return a -= b; }
 
    // Poly mul
    void DFT(Poly &a) { NTT::DIF(a.data(), a.size()); }
    void IDFT(Poly &a) { NTT::IDIT(a.data(), a.size()); }
    int norm(int n) { return 1 << (32 - __builtin_clz(n - 1)); }
    void norm(Poly &a) { if (!a.empty()) a.resize(norm(a.size()), 0); }
    Poly &dot(Poly &a, Poly &b) {
        fp(i, 0, a.size() - 1) a[i] = MUL(a[i], b[i]);
        return a;
    }
    Poly operator*(Poly a, Poly b) {
        int n = a.size() + b.size() - 1, L = norm(n);
        if (a.size() <= 8 || b.size() <= 8) {
            Poly c(n);
            fp(i, 0, a.size() - 1) fp(j, 0, b.size() - 1)
                c[i + j] = (c[i + j] + (ll) a[i] * b[j]) % P;
            return c;
        }
        a.resize(L), b.resize(L);
        DFT(a), DFT(b), dot(a, b), IDFT(a);
        return a.resize(n), a;
    }
     
    // Poly inv
    Poly Inv2k(Poly a) { // a.size() = 2^k
        int n = a.size(), m = n >> 1;
        if (n == 1) return {POW(a[0])};
        Poly b = Inv2k(Poly(a.begin(), a.begin() + m)), c = b;
        b.resize(n), DFT(a), DFT(b), dot(a, b), IDFT(a);
        fp(i, 0, n - 1) a[i] = i < m ? 0 : P - a[i];
        DFT(a), dot(a, b), IDFT(a);
        return move(c.begin(), c.end(), a.begin()), a;
    }
    Poly Inv(Poly a) {
        int n = a.size();
        norm(a), a = Inv2k(a);
        return a.resize(n), a;
    }
 
    // Poly div/mod
    Poly operator/(Poly a,Poly b){
        int k = a.size() - b.size() + 1;
        if (k < 0) return {0};
        reverse(a.begin(), a.end());
        reverse(b.begin(), b.end());
        b.resize(k), a = a * Inv(b);
        a.resize(k), reverse(a.begin(), a.end());
        return a;
    }
    pair<Poly, Poly> operator%(Poly a, const Poly& b) {
        Poly c = a / b;
        a -= b * c, a.resize(b.size() - 1);
        return {c, a};
    }
     
    // Poly sqrt
    Poly Sqrt(Poly a) {
        int n = a.size(), k = norm(n);
        Poly b = {(new Cipolla(P))->sqrt(a[0]).first}, c;
        a.resize(k * 2, 0);
        for (int L = 2; L <= k; L <<= 1) {
            b.resize(2 * L, 0), c = Poly(a.begin(), a.begin() + L) * Inv(b);
            fp(i, 0, 2 * L - 1) b[i] = MUL(b[i] + c[i], (P + 1) / 2);
        }
        return b.resize(n), b;
    }
     
    // Poly calculus
    void Derivative(Poly &a) {
        fp(i, 1, a.size() - 1) a[i - 1] = MUL(i, a[i]);
        a.pop_back();
    }
}

计算几何

typedef pair<double,double>pll;
pll operator+(pll x,pll y){
    return {x.first+y.first,x.second+y.second};
}
pll operator-(pll x,pll y){
    return {x.first-y.first,x.second-y.second};
}
pll operator*(pll x,double k){
    return {x.first*k,x.second*k};
}
pll operator/(pll x,double k){
    return {x.first/k,x.second/k};
}
double len(pll x){
    return hypot(x.first,x.second);
}
double Dot(const pdd &a,const pdd &b){
    return a.first*b.first+a.second*b.second;
}
double Cross(const pdd &a,const pdd &b){
    return a.first*b.second-a.second*b.first;
}
实数精度
const double pi = acos(-1.0);          //圆周率,精确到15位小数:3.141592653589793
const double eps = 1e-8;               //偏差值,有时用1e-10,但是要注意精度
int sgn(double x){                     //判断x的大小
    if(fabs(x) < eps)  return 0;       //x==0,返回0
    else return x<0?-1:1;              //x<0返回-1,x>0返回1
}
int dcmp(double x, double y){          //比较两个浮点数 
    if(fabs(x - y) < eps)   return 0;  //x==y,返回0
    else return x<y ?-1:1;             //x<y返回-1,x>y返回1
}
struct Point{  
    double x,y;
    Point(){}
    Point(double x,double y):x(x),y(y){}
    Point operator + (Point B){return Point(x+B.x,y+B.y);}
    Point operator - (Point B){return Point(x-B.x,y-B.y);}
    Point operator * (double k){return Point(x*k,y*k);}
    Point operator / (double k){return Point(x/k,y/k);}
    bool operator == (Point B){return sgn(x-B.x)==0 && sgn(y-B.y)==0;}
};
double Distance(Point A, Point B){ return hypot(A.x-B.x,A.y-B.y); }
向量
typedef Point Vector;
double Dot(Vector A,Vector B){ return A.x*B.x + A.y*B.y; }
double Len(Vector A){return sqrt(Dot(A,A));}
double Len2(Vector A){return Dot(A,A);}
double Angle(Vector A,Vector B){return acos(Dot(A,B)/Len(A)/Len(B));}
double Cross(Vector A,Vector B){return A.x*B.y - A.y*B.x;}
double Area2(Point A,Point B,Point C){ return Cross(B-A, C-A);}
Vector Rotate(Vector A, double rad){  //逆时针旋转rad角度
	return Vector(A.x*cos(rad)-A.y*sin(rad), A.x*sin(rad)+A.y*cos(rad));
}
Vector Normal(Vector A){return Vector(-A.y/Len(A), A.x/Len(A));} //求单位法向量
bool Parallel(Vector A, Vector B){return sgn(Cross(A,B)) == 0;}  //返回true表示平行或重合
线
struct Line{
    Point p1,p2;                  //(1)线上的两个点
    Line(){}
    Line(Point p1,Point p2):p1(p1),p2(p2){}
    Line(Point p,double angle){    //(4)根据一个点和倾斜角 angle 确定直线,0<=angle<pi
        p1 = p;
        if(sgn(angle - pi/2) == 0){p2 = (p1 + Point(0,1));}
        else{p2 = (p1 + Point(1,tan(angle)));}
    }
    Line(double a,double b,double c){     //(2)ax+by+c=0
        if(sgn(a) == 0){
            p1 = Point(0,-c/b);
            p2 = Point(1,-c/b);
        }
        else if(sgn(b) == 0){
            p1 = Point(-c/a,0);
            p2 = Point(-c/a,1);
        }
        else{
            p1 = Point(0,-c/b);
            p2 = Point(1,(-c-a)/b);
        }
    }
};
typedef Line Segment;
int Point_line_relation(Point p, Line v){
    int c = sgn(Cross(p-v.p1,v.p2-v.p1));
    if(c < 0)return 1;              //1:p在v的左边
    if(c > 0)return 2;              //2:p在v的右边
    return 0;                       //0:p在v上
}
bool Point_on_seg(Point p, Line v){ //点和线段:0 点不在线段v上;1 点在线段v上
   	return sgn(Cross(p-v.p1, v.p2-v.p1)) == 0 && sgn(Dot(p - v.p1,p - v.p2)) <= 0;
}
double Dis_point_line(Point p, Line v){
    return fabs(Cross(p-v.p1,v.p2-v.p1))/Distance(v.p1,v.p2);
}
Point Point_line_proj(Point p, Line v){
    double k = Dot(v.p2-v.p1,p-v.p1)/Len2(v.p2-v.p1);
    return v.p1+(v.p2-v.p1)*k;
}
Point Point_line_symmetry(Point p, Line v){
    Point q = Point_line_proj(p,v);
    return Point(2*q.x-p.x,2*q.y-p.y);
}
double Dis_point_seg(Point p, Segment v){
    if(sgn(Dot(p- v.p1,v.p2-v.p1))<0 || sgn(Dot(p- v.p2,v.p1-v.p2))<0)
        return min(Distance(p,v.p1),Distance(p,v.p2));
    return Dis_point_line(p,v);           //点的投影在线段上
}
int Line_relation(Line v1, Line v2){
    if(sgn(Cross(v1.p2-v1.p1,v2.p2-v2.p1)) == 0){
        if(Point_line_relation(v1.p1,v2)==0) return 1;  //1 重合
        else return 0;                                  //0 平行
    }
    return 2;                                           //2 相交
}
Point Cross_point(Point a,Point b,Point c,Point d){  //Line1:ab,  Line2:cd
    double s1 = Cross(b-a,c-a);
    double s2 = Cross(b-a,d-a);                    //叉积有正负
    return Point(c.x*s2-d.x*s1,c.y*s2-d.y*s1)/(s2-s1);
}
bool Cross_segment(Point a,Point b,Point c,Point d){    //Line1:ab,  Line2:cd
	double c1 = Cross(b-a,c-a),c2=Cross(b-a,d-a);
	double d1 = Cross(d-c,a-c),d2=Cross(d-c,b-c);
	return sgn(c1)*sgn(c2) < 0 && sgn(d1)*sgn(d2) < 0;  //1相交;0不相交
}
多边形
int Point_in_polygon(Point pt,Point *p,int n){  //点pt,多边形Point *p
    for(int i = 0;i < n;i++){                   //3:点在多边形的顶点上
        if(p[i] == pt)  return 3;
    }
    for(int i = 0;i < n;i++){                   //2:点在多边形的边上
        Line v=Line(p[i],p[(i+1)%n]);
        if(Point_on_seg(pt,v)) return 2;
    }
    int num = 0;
    for(int i = 0;i < n;i++){
        int j = (i+1)% n;
        int c = sgn(Cross(pt-p[j],p[i]-p[j]));
        int u = sgn(p[i].y - pt.y);
        int v = sgn(p[j].y - pt.y);
        if(c > 0 && u < 0 && v >=0) num++;
        if(c < 0 && u >=0 && v < 0) num--;
    }
    return num != 0;                            //1:点在内部; 0:点在外部
}
double Polygon_area(Point *p, int n){    //Point *p表示多边形
    double area = 0;
    for(int i = 0;i < n;i++)
        area += Cross(p[i],p[(i+1)%n]);
    return area/2;                    //面积有正负,返回时不能简单地取绝对值
}
Point Polygon_center(Point *p, int n){        //求多边形重心
    Point ans(0,0);
    if(Polygon_area(p,n)==0) return ans;
    for(int i = 0;i < n;i++)
        ans = ans+(p[i]+p[(i+1)%n])*Cross(p[i],p[(i+1)%n]);
    return ans/Polygon_area(p,n)/6;
}
凸包
//Convex_hull()求凸包。凸包顶点放在ch中,返回值是凸包的顶点数
int Convex_hull(Point *p,int n,Point *ch){
    n = unique(p,p+n)-p;    //去除重复点    
    sort(p,p+n);            //对点排序:按x从小到大排序,如果x相同,按y排序    
    int v=0;
	//求下凸包。如果p[i]是右拐弯的,这个点不在凸包上,往回退
    for(int i=0;i<n;i++){
        while(v>1 && sgn(Cross(ch[v-1]-ch[v-2],p[i]-ch[v-1]))<=0) //把后面ch[v-1]改成ch[v-2]也行
			v--;
        ch[v++]=p[i];
    }
    int j=v;
	//求上凸包
    for(int i=n-2;i>=0;i--){
        while(v>j && sgn(Cross(ch[v-1]-ch[v-2],p[i]-ch[v-1]))<=0) //把后面ch[v-1]改成ch[v-2]也行
			v--;
        ch[v++]=p[i];
    }
    if(n>1) v--;
    return v;                      //返回值v是凸包的顶点数
}
Point p[N],ch[N];                  //输入点是p[],计算得到的凸包顶点放在ch[]中
最近点对

使用前先sort(p,p+n,cmpxy)

bool cmpxy(Point A,Point B){return sgn(A.x-B.x)<0||(sgn(A.x-B.x)==0&&sgn(A.y-B.y)<0);}
bool cmpy(Point A,Point B){return sgn(A.y-B.y)<0;}
double Distance(Point A, Point B){ return hypot(A.x-B.x,A.y-B.y); }
double Closest_Pair(int left,int right){
    double dis = INF;
    if(left == right) return dis;            //只剩1个点
    if(left + 1 == right) return Distance(p[left], p[right]);//只剩2个点
    int mid = (left+right)/2;                //分治
    double d1 = Closest_Pair(left,mid);      //求s1内的最近点对
    double d2 = Closest_Pair(mid+1,right);   //求s2内的最近点对
    dis = min(d1,d2);
    int k = 0;
    for(int i=left;i<=right;i++)             //在s1和s2中间附近找可能的最小点对
        if(fabs(p[mid].x - p[i].x) <= dis)   //按x坐标来找
            tmp_p[k++] = p[i];
	sort(tmp_p,tmp_p+k,cmpy);         //按y坐标排序,用于剪枝。这里不能按x坐标排序
    for(int i=0;i<k;i++)
        for(int j=i+1;j<k;j++){
            if(tmp_p[j].y - tmp_p[i].y >= dis)  break;    //剪枝
            dis = min(dis,Distance(tmp_p[i],tmp_p[j]));
        }
	return dis;  //返回最小距离
}
旋转卡壳
double Rotating_Calipers(Point *p,int n){
    double ans=0;
    int j=2;
    for(int i=0;i<n;i++){
        while(fabs(Cross(p[j]-p[i],p[j]-p[(i+1)%n])<fabs(Cross(p[(j+1)%n]-p[i],p[(j+1)%n]-p[(i+1)%n]))))
            j=(j+1)%n;
        ans=max(ans,max(Distance(p[i],p[j]),Distance(p[(i+1)%n],p[j])));
    }
    return ans;
}
半平面交
struct Line{    //半平面的表示
	Point p;      //直线上一个点
	Vector v;     //方向向量,它的左边是半平面
	double ang;   //极角,从x正半轴旋转到v的角度
	Line(){};
	Line(Point p, Vector v):p(p),v(v){ang = atan2(v.y, v.x);}
	bool operator < (Line &L){return ang < L.ang;}     //用于排序
};
//点p在线L左边,即点p在线L在外面:
bool OnLeft(Line L,Point p){return sgn(Cross(L.v,p-L.p))>0;} 
Point Cross_point(Line a,Line b){    //两直线交点
    Vector u=a.p-b.p;
	double t=Cross(b.v,u)/Cross(a.v,b.v);
	return a.p+a.v*t;
}
vector<Point> HPI(vector<Line> L){     //求半平面交,返回凸多边形
	int n=L.size();
	sort(L.begin(),L.end());           //将所有半平面按照极角排序。
	int first,last;                    //指向双端队列的第一个和最后一个元素
	vector<Point> p(n);                //两个相邻半平面的交点
	vector<Line> q(n);                 //双端队列
	vector<Point> ans;                 //半平面交形成的凸包
	q[first=last=0]=L[0];
	for(int i=1;i<n;i++){
		//情况1:删除尾部的半平面
		while(first<last && !OnLeft(L[i], p[last-1])) last--; 
		//情况2:删除首部的半平面:
		while(first<last && !OnLeft(L[i], p[first]))  first++; 
		q[++last]=L[i];     //将当前的半平面加入双端队列尾部
		//极角相同的两个半平面,保留左边:
		if(fabs(Cross(q[last].v,q[last-1].v)) < eps){ 
		last--;
			if(OnLeft(q[last],L[i].p)) q[last]=L[i];
		}
		//计算队列尾部半平面交点:
		if(first<last) p[last-1]=Cross_point(q[last-1],q[last]);
	}
	//情况3:删除队列尾部的无用半平面
	while(first<last && !OnLeft(q[first],p[last-1])) last--;
	if(last-first<=1) return ans;   //空集
	p[last]=Cross_point(q[last],q[first]);  //计算队列首尾部的交点。
	for(int i=first;i<=last;i++)  ans.push_back(p[i]);   //复制。
	return ans;               //返回凸多边形
}
struct Circle{ //
    Point c;      //圆心
    double r;     //半径
    Circle(){}
    Circle(Point c,double r):c(c),r(r){}
    Circle(double x,double y,double _r){c=Point(x,y);r = _r;}
};
int Point_circle_relation(Point p, Circle C){ //点和圆的关系
    double dst = Distance(p,C.c);
    if(sgn(dst - C.r) < 0) return 0;       //0 点在圆内
    if(sgn(dst - C.r) ==0) return 1;       //1 圆上
    return 2;                               //2 圆外
}
int Line_circle_relation(Line v,Circle C){ //直线和圆的位置关系
    double dst = Dis_point_line(C.c,v);
    if(sgn(dst-C.r) < 0) return 0;     //0 直线和圆相交
    if(sgn(dst-C.r) ==0) return 1;     //1 直线和圆相切
    return 2;                               //2 直线在圆外
}
int Seg_circle_relation(Segment v,Circle C){ //线段和圆的位置关系
    double dst = Dis_point_seg(C.c,v);
    if(sgn(dst-C.r) < 0) return 0;      //0线段在圆内
    if(sgn(dst-C.r) ==0) return 1;      //1线段和圆相切
    return 2;                           //2线段在圆外
}
//pa, pb是交点。返回值是交点个数
int Line_cross_circle(Line v,Circle C,Point &pa,Point &pb){ //直线和圆的交点
  	if(Line_circle_relation(v, C)==2)  return 0;//无交点
	Point q = Point_line_proj(C.c,v);          //圆心在直线上的投影点
   	double d = Dis_point_line(C.c,v);          //圆心到直线的距离
	double k = sqrt(C.r*C.r-d*d);    
    if(sgn(k) == 0){                            //1个交点,直线和圆相切
   	    pa = q;	pb = q;	return 1;
    }
    Point n=(v.p2-v.p1)/ Len(v.p2-v.p1);       //单位向量
    pa = q + n*k;  pb = q - n*k;
    return 2;                                  //2个交点
}
最小圆覆盖
Point circle_center(const Point a, const Point b, const Point c){ //圆上三点定圆心
    Point center;
    double a1=b.x-a.x, b1=b.y-a.y, c1=(a1*a1+b1*b1)/2;
    double a2=c.x-a.x, b2=c.y-a.y, c2=(a2*a2+b2*b2)/2;
    double d =a1*b2-a2*b1;
    center.x =a.x+(c1*b2-c2*b1)/d;
    center.y =a.y+(a1*c2-a2*c1)/d;
    return center;
}
void min_cover_circle(Point *p, int n, Point &c, double &r){ //最小圆覆盖
    random_shuffle(p, p + n);             //随机函数,打乱所有点。这一步很重要
    c=p[0]; r=0;                          //从第1个点p0开始。圆心为p0,半径为0
    for(int i=1;i<n;i++)                  //扩展所有点
        if(sgn(Distance(p[i],c)-r)>0){    //点pi在圆外部
            c=p[i]; r=0;                  //重新设置圆心为pi,半径为0
            for(int j=0;j<i;j++)          //重新检查前面所有的点。
                if(sgn(Distance(p[j],c)-r)>0){   //两点定圆
                    c.x=(p[i].x + p[j].x)/2;
                    c.y=(p[i].y + p[j].y)/2;
                    r=Distance(p[j],c);
                    for(int k=0;k<j;k++)
                        if (sgn(Distance(p[k],c)-r)>0){   //两点不能定圆,就三点定圆
                            c=circle_center(p[i],p[j],p[k]);
                            r=Distance(p[i], c);
                        }
                }
        }
}

三维计算几何

struct Point{
    double x,y,z;
    Point(){};
    Point(double x,double y,double z):x(x),y(y),z(z){};
    Point operator - (Point t){
        return Point(x-t.x,y-t.y,z-t.z);
    }
    Point operator + (Point t){
        return Point(x+t.x,y+t.y,z+t.z);
    }
    Point operator / (double k){
        return Point(x/k,y/k,z/k);
    }
    double operator * (Point t){
        return x*t.x+y*t.y+z*t.z;
    }
    Point operator ^ (Point t){
        return Point(y*t.z-z*t.y,z*t.x-x*t.z,x*t.y-y*t.x);
    }
    double len(){
        return sqrt(x*x+y*y+z*z);
    }
    Point unit(){
        return *this/len();
    }
};

高精度

#ifndef __x86_64__
#error Only x86-64 targets are supported
#endif
#include<cstdint>
#include<vector>
#include<string>
#include<iosfwd>
#define __builtin_ia32_adc(x,y,flag) __asm__("addb   %3, %0\n\t" "adcq   %2, %1\n\t" "setc   %0":"+r"(flag),"+r"(x):"r"(y),"i"(-1):"cc")

struct bigint{// made by dengyaotriangle!
    typedef unsigned long long u64;
    typedef unsigned __int128 u128;
    typedef std::size_t st;
    std::vector<u64> data;
    bigint(){}
    bigint(u64 x):data(x?std::vector<u64>{x}:std::vector<u64>{}){}
    bigint(const std::string &s){
        st pos=s.length();
        int cnt=0;
        u64 val=0;
        while(pos){
            pos--;
            if(cnt==64){
                data.push_back(val);
                val=0;cnt=0;
            }
            val|=(u64)(s[pos]=='1')<<cnt;
            ++cnt;
        }
        if(cnt&&val)data.push_back(val);
    }
    explicit operator std::string()const{
        if(data.empty())return "0";
        bool t=0;
        std::string ret;
        for(int i=63;i>=0;i--){
            t|=(data.back()>>i)&1;
            if(t)ret+='0'|((data.back()>>i)&1);
        }
        st i=data.size()-1;
        while(i){
            i--;
            for(int j=63;j>=0;j--)ret+='0'|((data[i]>>j)&1);
        }
        return ret;
    }
    explicit operator bool()const{return !data.empty();}
    explicit operator u64()const{return data.empty()?0:data[0];}
    st digit()const{
        if(data.empty())return 0;
        return (data.size()<<6)-__builtin_clzll(data.back());
    }
    bool operator==(const bigint &a)const{return a.data==data;}
    bool operator!=(const bigint &a)const{return a.data!=data;}
    bool operator<(const bigint &a)const{
        if(data.size()!=a.data.size())return data.size()<a.data.size();
        for(st i=data.size();i;){
            i--;
            if(data[i]!=a.data[i])return data[i]<a.data[i];
        }
        return 0;
    }
    bool operator>(const bigint &a)const{return a<(*this);}
    bool operator<=(const bigint &a)const{return !(*this>a);}
    bool operator>=(const bigint &a)const{return !(*this<a);}
    bigint &operator<<=(st n){
        if(data.empty())return *this;
        int w=n&63;st z=n>>6;
        st i=data.size();
        bool flg=0;
        if(w&&(data.back()>>(64-w)))data.push_back(0),flg=1;
        data.resize(data.size()+z);
        while(i){
            i--;
            if(flg)data[i+z+1]|=data[i]>>(64-w);
            data[i+z]=data[i]<<w;
            flg|=bool(w);
        }
        for(st i=0;i<z;i++)data[i]=0;
        return *this;
    }
    bigint &operator>>=(st n){
        int w=n&63;st z=n>>6,i=0;
        for(;i+z<data.size();i++){
            if(w&&i)data[i-1]|=data[i+z]<<(64-w);
            data[i]=data[i+z]>>w;
        }
        while(data.size()>i)data.pop_back();
        while(!data.empty()&&data.back()==0)data.pop_back();
        return *this;
    }
    bigint operator<<(st n)const{return bigint(*this)<<=n;}
    bigint operator>>(st n)const{return bigint(*this)>>=n;}
    bigint &operator+=(const bigint &a){
        data.resize(std::max(data.size(),a.data.size()));
        bool carry=0;
        for(st i=0;i<data.size();i++){
            u64 rg=0;
            if(i<a.data.size())rg=a.data[i];
            __builtin_ia32_adc(data[i],rg,carry);
        }
        if(carry)data.push_back(1);
        return *this;
    }
    bigint &operator-=(const bigint &a){
        bool carry=1;
        for(st i=0;i<data.size();i++){
            u64 rg=-1;
            if(i<a.data.size())rg=~a.data[i];
            __builtin_ia32_adc(data[i],rg,carry);
        }
        while(!data.empty()&&data.back()==0)data.pop_back();
        return *this;
    }
    bigint &operator++(){return *this+=bigint(1);}
    bigint &operator--(){return *this-=bigint(1);}
    bigint operator++(int){bigint tmp=*this;++*this;return tmp;}
    bigint operator--(int){bigint tmp=*this;--*this;return tmp;}
    bigint &operator*=(const bigint &a){
        std::vector<u64> ret(data.size()+a.data.size());
        for(st i=0;i<data.size();i++){
            u64 carry=0;bool wcarry=0;
            st k=i;
            for(st j=0;j<a.data.size();j++,k++){
                u128 r=data[i]*(u128)a.data[j]+carry;
                u64 cur=r;
                carry=r>>64;
                __builtin_ia32_adc(ret[k],cur,wcarry);
            }
            while(carry||wcarry){
                __builtin_ia32_adc(ret[k],carry,wcarry);
                carry=0;k++;
            }
        }
        while(!ret.empty()&&ret.back()==0)ret.pop_back();
        data=ret;
        return *this;
    }
    bigint &operator/=(const bigint &a){
        if(a.digit()>digit()){
            data.clear();
            return *this;
        }
        st z=digit()-a.digit();
        std::vector<u64> ret;
        while(1){
            bigint tmp=a<<z;
            if(tmp<=*this){
                *this-=tmp;
                st v1=z>>6;
                if(ret.size()<=v1)ret.resize(v1+1);
                ret[v1]|=(u64)(1)<<(z&63);
            }
            if(!z)break;
            z--;
        }
        data=ret;
        return *this;
    }
    bigint &operator%=(const bigint &a){
        if(a.digit()>digit())return *this;
        st z=digit()-a.digit();
        while(1){
            bigint tmp=a<<z;
            if(tmp<=*this)*this-=tmp;
            if(!z)break;
            z--;
        }
        return *this;
    }
    bigint operator+(const bigint &a)const{return bigint(*this)+=a;}
    bigint operator-(const bigint &a)const{return bigint(*this)-=a;}
    bigint operator*(const bigint &a)const{return bigint(*this)*=a;}
    bigint operator/(const bigint &a)const{return bigint(*this)/=a;}
    bigint operator%(const bigint &a)const{return bigint(*this)%=a;}
};
std::istream &operator>>(std::istream &st,bigint &a){
    std::string s;st>>s;a=bigint(s);return st;
}
std::ostream &operator<<(std::ostream &st,const bigint &a){
    return st<<(std::string)(a);
}

对拍

#pragma GCC optimize(2)
#include<bits/stdc++.h>
using namespace std;
typedef long long ll;
#define int long long
typedef unsigned long long ull;
#define dmp(x) cerr<<"DEBUG"<<__LINE__<<":"<<#x<<" "<<x<<endl
const ll INF=0x3f3f3f3f3f3f3f3fLL;
typedef pair<int,int> pii;
signed main() {
    ios::sync_with_stdio(false);cin.tie(0);
    while(true){
        system("gene.exe>data.txt");
        system("A.exe<data.txt>out.txt");
        system("B.exe<data.txt>ans.txt");
        if(system("fc out.txt ans.txt")){// Windows
            break;
        }
        // if(system("diff out.txt ans.txt")){// Linux
        //     break;
        // }
    }
    return 0;
}

Releases

No releases published

Packages

No packages published