Skip to content

Guitaricet/new-semantic-parsing

 
 

Repository files navigation

Incremental Retraining for Semantic Parsing

Introduction

In this work we study how to efficiently add new data to a semantic parsing model without retraining it from scratch. Experiments include finetuning on new data, finetuning with subsampling from the old data and regularization techniques that improve the final preformance of the model and/or reduce the need of using large amounts of old data.

Paper: Update Frequently, Update Fast: Retraining Semantic Parsing Systems in a Fraction of Time, https://arxiv.org/abs/2010.07865

Installation

To work with the repository you need to install required packages and this package. Edit (-e) mode is perferred if you want to change the code.

pip install -r requirements.txt
pip install -e .

Downloading data

scripts/download_data.sh downloads TOP and SNIPS datasets. It also reformats SNIPS into TOP format.

# download data

sh scripts/download_data.sh

Usage (class-incremental scenario)

First, use notebooks/17_top_multiple_splits.ipynb to split TOP data into multiple class-incremental chunks (about 46 of them). It will create a folder data/top_incremental with files batch_0.csv, ..., batch_46.csv.

Then, execute pre-processing script

OUTPUT_PREFIX=data-bin/top_incremental

for file_name in data/top-incremental/*.csv ; do
    echo "Pre-processing $file_name"
done

    python cli/preprocess.py \
      --data data/top-dataset-semantic-parsing \
      --text-tokenizer bert-base-cased \
      --split-amount 0.9 \
      --output-dir OUTPUT_PREFIX/ \

done

Usage (data-incremental scenario)

Preprocess script splits train set into pretrain and finetune parts, creates tokenizers, numericalizes the data and saves in to --output-dir folder.

# preprocess

DATA=data-bin/top_dataset

python cli/preprocess.py \
  --data data/top-dataset-semantic-parsing \
  --text-tokenizer bert-base-cased \
  --split-amount 0.9 \
  --output-dir $DATA \

Train script trains the model on the pretrain part and saves the model and the trainer to --output-dir folder. We recommend the following hyperparameters for training.

# train

DATA=data-bin/top_dataset
MODEL=output_dir/top_model

python cli/train_lightning.py \
  --data-dir $DATA  \
  --encoder-model bert-base-cased \
  --decoder-lr 0.2 \
  --encoder-lr 0.02 \
  --batch-size 192 \
  --layers 4 \
  --hidden 256 \
  --dropout 0.2 \
  --heads 4 \
  --label-smoothing 0.1 \
  --epochs 100 \
  --warmup-steps 1500 \
  --freeze-encoder 0 \
  --unfreeze-encoder 500 \
  --log-every 150 \
  --early-stopping 10 \
  --output-dir $MODEL \

Retrain script loads the model and optimizer from the checkpoint and finetunes on the finetune part of the training set.

DATA=data-bin/top_dataset
MODEL=output_dir/top_model

python cli/retrain.py \
  --data-dir $DATA \
  --model-dir $MODEL \
  --batch-size 128 \
  --dropout 0.2 \
  --epochs 40 \
  --log-every 100 \
  --old-data-amount 0.1 \
  --move-norm 0.1 \

Run scripts

You can find more usage examples in the scripts directory.

About

Code accompanying the paper "Update Frequently, Update Fast: Retraining Semantic Parsing Systems in a Fraction of Time"

Resources

License

Code of conduct

Stars

Watchers

Forks

Packages

No packages published

Languages

  • Jupyter Notebook 94.7%
  • Python 4.5%
  • Shell 0.8%