Skip to content

rezaakb/peft-vit

 
 

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 

History

75 Commits
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Repository files navigation

Parameter Efficient Fine-tuning of Self-supervised ViTs without Catastrophic Forgetting

[PyTorch] Code for the paper - 'Parameter Efficient Fine-tuning of Self-supervised ViTs without Catastrophic Forgetting' (CVPR - eLVM 2024). Paper

img

Includes standard full model, linear probing and parameter efficient strategies like Block Expansion and LoRA for fine-tuning Vision Transformers (ViTs) for image classification.

Requirements

  • Python 3.8+
  • pip install -r requirements.txt

Available Datasets

Dataset --data.dataset
CIFAR-10 cifar10
CIFAR-100 cifar100
Oxford-IIIT Pet Dataset pets37
Oxford Flowers-102 flowers102
Food-101 food101
Describable Textures Dataset dtd
Image Folder custom dataset

Usage:

  • config/ contains example configuration files which can be run with:
python main.py fit --config path/to/config

You can either edit the existing config for your own choice of hyperparameters or choose to do it from command line as follows:

python main.py fit --trainer.accelerator gpu --trainer.devices 1 --trainer.precision 16-mixed
--trainer.max_steps 5000 --model.warmup_steps 500 --model.lr 0.01
--trainer.val_check_interval 500 --data.batch_size 128 --data.dataset cifar100

Examples

1. Full Fine-tuning:

  • To fully fine-tune a ViT-B/16 model on Foods-101 run:
    python main.py fit --config configs/full/food101.yaml

2. Linear Probing:

  • To train linear probes on top of a ViT-B/16 model on Foods-101 run:
    python main.py fit --config configs/linear/food101.yaml

3. Low-Rank Adaptation (LoRA):

  • To fine-tuning a ViT-B/16 model using LoRA on Foods-101 run:
    python main.py fit --config configs/lora/food101.yaml

4. Block Expansion:

  • To fine-tune a ViT-B/16 model using block expansion on Foods-101 run:
    python main.py fit --config configs/block/food101.yaml

Training on a Custom Dataset

To train on a custom dataset first organize the images into Image Folder format. Then set --data.dataset custom, --data.root path/to/custom/dataset and --data.num_classes <num-dataset-classes>.

Evaluate

To evaluate a trained model on its test set, find the path of the saved config file for the checkpoint (eg. output/cifar10/version_0/config.yaml) and run:

python main.py test --ckpt_path path/to/checkpoint --config path/to/config
  • Note: Make sure the --trainer.precision argument is set to the same level as used during training.

Results

All results are from fine-tuned ViT-B/16 models which were pretrained on ImageNet-21k (--model.model_name vit-b16-224-in21k).

img2

Standard Fine-tuning

Model # Params Cifar-100 IN-1k MEAN Config
All 85.9 M 88.13 25.24 56.69 Link
Top-3 21.3 M 84.56 74.15 79.36 Link
Linear 76.9 K 80.57 76.11 78.34 Link

LoRA

Model # Params Cifar-100 IN-1k MEAN Config
r=4 301 K 87.91 66.82 77.37 Link
r=8 448 K 88.27 65.99 77.13 Link
r=16 743 K 87.84 65.06 76.45 Link

Block Expansion

Model # Params Cifar-100 IN-1k MEAN Config
p=1 7.2 M 82.72 75.75 79.24 Link
p=2 14.3 M 86.70 75.54 81.12 Link
p=3 21.3 M 88.58 74.61 81.60 Link
p=4 28.4 M 89.09 72.28 80.69 Link

Bibtex

You can cite us using the following:

@inproceedings{AkbarianBafghi2024ParameterEF,
  title={Parameter Efficient Fine-tuning of Self-supervised ViTs without Catastrophic Forgetting},
  author={Reza Akbarian Bafghi and Nidhin Harilal and Claire Monteleoni and Maziar Raissi},
  year={2024},
  url={https://api.semanticscholar.org/CorpusID:269430713}
}

About

Parameter Efficient Fine-tuning of Self-supervised ViTs without Catastrophic Forgetting

Topics

Resources

License

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published

Languages

  • Python 100.0%